This work investigates in a forecast application whether the forecast accuracy of the US unemployment growth rate can be improved when the time series model is augmented with Google Trends data. The empirical analysis is based on up to 10 distinct Google Trends search terms, which show a sufficiently high correlation with the target variable US unemployment rate. A Google index from the 10 Google search terms is derived by estimating a Factor model with the method of principal component analysis. By using a VAR model it is empirically shown that the forecast accuracy of the US unemployment growth rate can be improved by augmenting the model with the Google search terms.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Djamil Yousefi, B.Sc. Economics, Major in Quantitative Economics, University of Constance.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This work investigates in a forecast application whether the forecast accuracy of the US unemployment growth rate can be improved when the time series model is augmented with Google Trends data. The empirical analysis is based on up to 10 distinct Google Trends search terms, which show a sufficiently high correlation with the target variable US unemployment rate. A Google index from the 10 Google search terms is derived by estimating a Factor model with the method of principal component analysis. By using a VAR model it is empirically shown that the forecast accuracy of the US unemployment growth rate can be improved by augmenting the model with the Google search terms. 88 pp. Englisch. Bestandsnummer des Verkäufers 9786200478412
Anzahl: 2 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26388007240
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 391592599
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18388007234
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Yousefi DjamilDjamil Yousefi, M.Sc. University of Konstanz, Major in Econometrics and Applied EconomicsThis work investigates in a forecast application whether the forecast accuracy of the US unemployment growth rate can be impro. Bestandsnummer des Verkäufers 497105853
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This work investigates in a forecast application whether the forecast accuracy of the US unemployment growth rate can be improved when the time series model is augmented with Google Trends data. The empirical analysis is based on up to 10 distinct Google Trends search terms, which show a sufficiently high correlation with the target variable US unemployment rate. A Google index from the 10 Google search terms is derived by estimating a Factor model with the method of principal component analysis. By using a VAR model it is empirically shown that the forecast accuracy of the US unemployment growth rate can be improved by augmenting the model with the Google search terms.Books on Demand GmbH, Überseering 33, 22297 Hamburg 88 pp. Englisch. Bestandsnummer des Verkäufers 9786200478412
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This work investigates in a forecast application whether the forecast accuracy of the US unemployment growth rate can be improved when the time series model is augmented with Google Trends data. The empirical analysis is based on up to 10 distinct Google Trends search terms, which show a sufficiently high correlation with the target variable US unemployment rate. A Google index from the 10 Google search terms is derived by estimating a Factor model with the method of principal component analysis. By using a VAR model it is empirically shown that the forecast accuracy of the US unemployment growth rate can be improved by augmenting the model with the Google search terms. Bestandsnummer des Verkäufers 9786200478412
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Using Google Trends Data in Forecasting Economic Variables | Time Series Analysis | Djamil Yousefi | Taschenbuch | Englisch | 2019 | LAP LAMBERT Academic Publishing | EAN 9786200478412 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 120469724
Anzahl: 5 verfügbar