The goal of this work is to recall some types of weak open sets, prove some of its properties and use them to define new kinds of separation axioms. Let us state below :some of our important main theoremsLet (X,σ) and (Y,τ) be two topological spaces satisfy the ω-condition then the map f:(X,σ)⟶(Y,τ) is continuous if and only if it is ω-continuous. ( This result is not true without ω-condition ). Let (X,σ) and (Y,τ) be two topological spaces satisfy the ω-B_α-condition then the map f:(X,σ)⟶(Y,τ) is continuous if and only if it is α-ω-continuous. Let (X,σ) and (Y,τ) be two topological spaces satisfy the ω-B-condition then the map f:(X,σ)⟶(Y,τ) is continuous if and only if it is pre-ω-continuous. Let (X,σ) and (Y,τ) be two door topological spaces and f:(X,σ)⟶(Y,τ) be a map, then f is pre-ω-continuous if and only if it is ω-continuous. And f is β-ω-continuous if and only if it is b-ω-continuous. Let f:X⟶Y be an ω-continuous map from the ω-compact space Xonto a topological space Y. Then Yis ω-compact space. (Similarly for the other types of the weak continuity and compactness)
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 23,00 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerAnbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The goal of this work is to recall some types of weak open sets, prove some of its properties and use them to define new kinds of separation axioms. Let us state below :some of our important main theoremsLet (X,s) and (Y, ) be two topological spaces satisfy the -condition then the map f:(X,s) (Y, ) is continuous if and only if it is -continuous. ( This result is not true without -condition ). Let (X,s) and (Y, ) be two topological spaces satisfy the -B_ -condition then the map f:(X,s) (Y, ) is continuous if and only if it is - -continuous. Let (X,s) and (Y, ) be two topological spaces satisfy the -B-condition then the map f:(X,s) (Y, ) is continuous if and only if it is pre- -continuous. Let (X,s) and (Y, ) be two door topological spaces and f:(X,s) (Y, ) be a map, then f is pre- -continuous if and only if it is -continuous. And f is beta- -continuous if and only if it is b- -continuous. Let f:X Y be an -continuous map from the -compact space Xonto a topological space Y. Then Yis -compact space. (Similarly for the other types of the weak continuity and compactness) 108 pp. Englisch. Bestandsnummer des Verkäufers 9786200778352
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Hadi Mustafa HasanBorn in 18 December 1984 at Hilla-Babil-Iraq. Assistant Professor Professor in 16 May 2017. research interests, General Topology. University of Babylon, Faculty of Education for Pure Sciences, Department of Mathemat. Bestandsnummer des Verkäufers 385897568
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -The goal of this work is to recall some types of weak open sets, prove some of its properties and use them to define new kinds of separation axioms. Let us state below :some of our important main theoremsLet (X,¿) and (Y,¿) be two topological spaces satisfy the ¿-condition then the map f:(X,¿)¿(Y,¿) is continuous if and only if it is ¿-continuous. ( This result is not true without ¿-condition ). Let (X,¿) and (Y,¿) be two topological spaces satisfy the ¿-B_¿-condition then the map f:(X,¿)¿(Y,¿) is continuous if and only if it is ¿-¿-continuous. Let (X,¿) and (Y,¿) be two topological spaces satisfy the ¿-B-condition then the map f:(X,¿)¿(Y,¿) is continuous if and only if it is pre-¿-continuous. Let (X,¿) and (Y,¿) be two door topological spaces and f:(X,¿)¿(Y,¿) be a map, then f is pre-¿-continuous if and only if it is ¿-continuous. And f is ¿-¿-continuous if and only if it is b-¿-continuous. Let f:X¿Y be an ¿-continuous map from the ¿-compact space Xonto a topological space Y. Then Yis ¿-compact space. (Similarly for the other types of the weak continuity and compactness)Books on Demand GmbH, Überseering 33, 22297 Hamburg 108 pp. Englisch. Bestandsnummer des Verkäufers 9786200778352
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The goal of this work is to recall some types of weak open sets, prove some of its properties and use them to define new kinds of separation axioms. Let us state below :some of our important main theoremsLet (X,s) and (Y, ) be two topological spaces satisfy the -condition then the map f:(X,s) (Y, ) is continuous if and only if it is -continuous. ( This result is not true without -condition ). Let (X,s) and (Y, ) be two topological spaces satisfy the -B_ -condition then the map f:(X,s) (Y, ) is continuous if and only if it is - -continuous. Let (X,s) and (Y, ) be two topological spaces satisfy the -B-condition then the map f:(X,s) (Y, ) is continuous if and only if it is pre- -continuous. Let (X,s) and (Y, ) be two door topological spaces and f:(X,s) (Y, ) be a map, then f is pre- -continuous if and only if it is -continuous. And f is beta- -continuous if and only if it is b- -continuous. Let f:X Y be an -continuous map from the -compact space Xonto a topological space Y. Then Yis -compact space. (Similarly for the other types of the weak continuity and compactness). Bestandsnummer des Verkäufers 9786200778352
Anzahl: 1 verfügbar