This book presents a new method to recognize faces with high accuracy for the above aspects. A method with 68 points landmark-based face estimation and image normalization with AdaBoost-LDA for poses and illumination invariant face recognition is proposed. A single training image per person is derived from number of training image samples using average intensity values to reduce memory and execution time. AdaBoost-LDA is used for extraction of feature and classic nearest centre classifier is used for feature classification. Proposed method has successfully handled the illumination conditions, pose variations, and occlusion in low resolution images. Experimental results illustrate the promising performance of presented approach over the current published approaches on LFW, AR and CMU Multi-PIE databases.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Haq Mahmood UlMahmood Ul Haq received a B.S. degree in Electrical and Electronics Engineering from COMSATS University Islamabad (CUI), Abbottabad Campus, Pakistan, in 2016. He received his MS Electrical Engineering in COMSATS Univers. Bestandsnummer des Verkäufers 385945155
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book presents a new method to recognize faces with high accuracy for the above aspects. A method with 68 points landmark-based face estimation and image normalization with AdaBoost-LDA for poses and illumination invariant face recognition is proposed. A single training image per person is derived from number of training image samples using average intensity values to reduce memory and execution time. AdaBoost-LDA is used for extraction of feature and classic nearest centre classifier is used for feature classification. Proposed method has successfully handled the illumination conditions, pose variations, and occlusion in low resolution images. Experimental results illustrate the promising performance of presented approach over the current published approaches on LFW, AR and CMU Multi-PIE databases.Books on Demand GmbH, Überseering 33, 22297 Hamburg 96 pp. Englisch. Bestandsnummer des Verkäufers 9786202513470
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a new method to recognize faces with high accuracy for the above aspects. A method with 68 points landmark-based face estimation and image normalization with AdaBoost-LDA for poses and illumination invariant face recognition is proposed. A single training image per person is derived from number of training image samples using average intensity values to reduce memory and execution time. AdaBoost-LDA is used for extraction of feature and classic nearest centre classifier is used for feature classification. Proposed method has successfully handled the illumination conditions, pose variations, and occlusion in low resolution images. Experimental results illustrate the promising performance of presented approach over the current published approaches on LFW, AR and CMU Multi-PIE databases. 96 pp. Englisch. Bestandsnummer des Verkäufers 9786202513470
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book presents a new method to recognize faces with high accuracy for the above aspects. A method with 68 points landmark-based face estimation and image normalization with AdaBoost-LDA for poses and illumination invariant face recognition is proposed. A single training image per person is derived from number of training image samples using average intensity values to reduce memory and execution time. AdaBoost-LDA is used for extraction of feature and classic nearest centre classifier is used for feature classification. Proposed method has successfully handled the illumination conditions, pose variations, and occlusion in low resolution images. Experimental results illustrate the promising performance of presented approach over the current published approaches on LFW, AR and CMU Multi-PIE databases. Bestandsnummer des Verkäufers 9786202513470
Anzahl: 1 verfügbar
Anbieter: dsmbooks, Liverpool, Vereinigtes Königreich
paperback. Zustand: New. New. SHIPS FROM MULTIPLE LOCATIONS. book. Bestandsnummer des Verkäufers D8S0-3-M-6202513470-6
Anzahl: 1 verfügbar