Image performance in underwater robots is one of the most challenging problems for autonomous underwater robotics due to light transmission in water. Although image restoration techniques can effectively remove a haze from a damaged image, they require multiple images from the same location making it difficult to use in real time. Considering the positive effects of in-depth learning strategies on other image processing problems such as coloring or finding objects, a deeper learning solution is proposed. The convolutional neural network is trained in image retrieval techniques to capture one image better than other image enhancement techniques. The proposed method is capable of producing high quality image restoration images with a single image as input. The neural network is verified using images from various locations and signals to prove the power of normal action.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Patel AdityaProf. Aditya Patel works as an Assistant Professor in CSE Dept. at LNCT Bhopal. Previously he worked as Web Designer & Developer in Ignatiuz S/W Pvt Lmtd, Indore. He has worked on more than 50 websites / softwares. He has. Bestandsnummer des Verkäufers 488320856
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Image performance in underwater robots is one of the most challenging problems for autonomous underwater robotics due to light transmission in water. Although image restoration techniques can effectively remove a haze from a damaged image, they require multiple images from the same location making it difficult to use in real time. Considering the positive effects of in-depth learning strategies on other image processing problems such as coloring or finding objects, a deeper learning solution is proposed. The convolutional neural network is trained in image retrieval techniques to capture one image better than other image enhancement techniques. The proposed method is capable of producing high quality image restoration images with a single image as input. The neural network is verified using images from various locations and signals to prove the power of normal action.Books on Demand GmbH, Überseering 33, 22297 Hamburg 72 pp. Englisch. Bestandsnummer des Verkäufers 9786203869477
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Image performance in underwater robots is one of the most challenging problems for autonomous underwater robotics due to light transmission in water. Although image restoration techniques can effectively remove a haze from a damaged image, they require multiple images from the same location making it difficult to use in real time. Considering the positive effects of in-depth learning strategies on other image processing problems such as coloring or finding objects, a deeper learning solution is proposed. The convolutional neural network is trained in image retrieval techniques to capture one image better than other image enhancement techniques. The proposed method is capable of producing high quality image restoration images with a single image as input. The neural network is verified using images from various locations and signals to prove the power of normal action. 72 pp. Englisch. Bestandsnummer des Verkäufers 9786203869477
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Image performance in underwater robots is one of the most challenging problems for autonomous underwater robotics due to light transmission in water. Although image restoration techniques can effectively remove a haze from a damaged image, they require multiple images from the same location making it difficult to use in real time. Considering the positive effects of in-depth learning strategies on other image processing problems such as coloring or finding objects, a deeper learning solution is proposed. The convolutional neural network is trained in image retrieval techniques to capture one image better than other image enhancement techniques. The proposed method is capable of producing high quality image restoration images with a single image as input. The neural network is verified using images from various locations and signals to prove the power of normal action. Bestandsnummer des Verkäufers 9786203869477
Anzahl: 1 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18397306506
Anzahl: 4 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26397306496
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 400151903
Anzahl: 4 verfügbar