Verwandte Artikel zu Fast Kernel Expansions with Applications to CV and...

Fast Kernel Expansions with Applications to CV and DL. Part 1b: Carnegie Mellon. City University of Hong Kong - Softcover

 
9786203925395: Fast Kernel Expansions with Applications to CV and DL. Part 1b: Carnegie Mellon. City University of Hong Kong
  • VerlagLAP LAMBERT Academic Publishing
  • Erscheinungsdatum2021
  • ISBN 10 620392539X
  • ISBN 13 9786203925395
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten76

EUR 9,95 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

Suchergebnisse für Fast Kernel Expansions with Applications to CV and...

Beispielbild für diese ISBN

De Zarzà, I.
ISBN 10: 620392539X ISBN 13: 9786203925395
Neu Softcover
Print-on-Demand

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18396035680

Verkäufer kontaktieren

Neu kaufen

EUR 38,65
Währung umrechnen
Versand: EUR 9,95
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Foto des Verkäufers

I. de Zarzà
ISBN 10: 620392539X ISBN 13: 9786203925395
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The scope of the manuscript is to give a review of kernel expansions, FOURIER features and fast numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in large-scale datasets. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. Applications to Computer Vision (CV) and Deep Learning (DL) are enclosed with practical hints on the topic. Specifically, we give a primer on facial recognition and a foundation for the use of Vision in Robotics. The scope of the manuscript is to give a review of kernel expansions, FOURIER features and fast numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in large-scale datasets. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. Applications to Computer Vision (CV) and Deep Learning (DL) are enclosed with practical hints on the topic. Specifically, we give a primer on facial recognition and a foundation for the use of Vision in Robotics. 76 pp. Englisch. Bestandsnummer des Verkäufers 9786203925395

Verkäufer kontaktieren

Neu kaufen

EUR 32,90
Währung umrechnen
Versand: EUR 23,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

I. de Zarzà
ISBN 10: 620392539X ISBN 13: 9786203925395
Neu Taschenbuch
Print-on-Demand

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The scope of the manuscript is to give a review of kernel expansions, FOURIER features and fast numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in large-scale datasets. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. Applications to Computer Vision (CV) and Deep Learning (DL) are enclosed with practical hints on the topic. Specifically, we give a primer on facial recognition and a foundation for the use of Vision in Robotics. The scope of the manuscript is to give a review of kernel expansions, FOURIER features and fast numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in large-scale datasets. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. Applications to Computer Vision (CV) and Deep Learning (DL) are enclosed with practical hints on the topic. Specifically, we give a primer on facial recognition and a foundation for the use of Vision in Robotics. Bestandsnummer des Verkäufers 9786203925395

Verkäufer kontaktieren

Neu kaufen

EUR 34,42
Währung umrechnen
Versand: EUR 28,65
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

I. de Zarzà
ISBN 10: 620392539X ISBN 13: 9786203925395
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 482758039

Verkäufer kontaktieren

Neu kaufen

EUR 29,02
Währung umrechnen
Versand: EUR 48,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb