With the advent of Bigdata technologies, healthcare data captured and stored at multiple granular levels and multiple formats. In the healthcare domain, includes hospitals, pharmaceuticals, and insurance companies have an enormous amount of data in structured tables. However, significant amounts of the big data remain underutilized due to data isolation, distribution, and heterogeneity. Despite interconnected tabular data linked together in some way for ML input, challenges are, increased dimensionality, normalization of data which is not natural representation, repetition of data on merging different aggregated data across tables. Machine learning models supposes the observations are not dependent however, the real world information is interconnected. Knowledge graphs and machine learning are two important tools to understand and model complex concepts, while machine learning is a process by which computers learn from data, without being explicitly programmed.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Für Pharmaunternehmen ist es sehr wichtig, von den Fachkräften des Gesundheitswesens in einem therapeutischen Universum zu erfahren, wer wahrscheinlich zum ersten Mal ein Medikament ausprobieren, mehr verschreiben oder Ihre Marke in naher Zukunft absetzen wird. Die Beantwortung dieser Fragen und die Erlangung eines besseren Verständnisses der dynamischen HCP-Landschaft haben für die Pharmaindustrie höchste Priorität.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9786207488865
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9786207488865
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9786207488865
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9786207488865_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26401139567
Anzahl: 4 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 52 pp. Englisch. Bestandsnummer des Verkäufers 9786207488865
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 396318896
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18401139557
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. With the advent of Bigdata technologies, healthcare data captured and stored at multiple granular levels and multiple formats. In the healthcare domain, includes hospitals, pharmaceuticals, and insurance companies have an enormous amount of data in structur. Bestandsnummer des Verkäufers 1676147129
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -With the advent of Bigdata technologies, healthcare data captured and stored at multiple granular levels and multiple formats. In the healthcare domain, includes hospitals, pharmaceuticals, and insurance companies have an enormous amount of data in structured tables. However, significant amounts of the big data remain underutilized due to data isolation, distribution, and heterogeneity. Despite interconnected tabular data linked together in some way for ML input, challenges are, increased dimensionality, normalization of data which is not natural representation, repetition of data on merging different aggregated data across tables. Machine learning models supposes the observations are not dependent however, the real world information is interconnected. Knowledge graphs and machine learning are two important tools to understand and model complex concepts, while machine learning is a process by which computers learn from data, without being explicitly programmed.Books on Demand GmbH, Überseering 33, 22297 Hamburg 52 pp. Englisch. Bestandsnummer des Verkäufers 9786207488865
Anzahl: 2 verfügbar