Brain tumors provide considerable obstacles in the field of healthcare,requiring accurate and prompt diagnosis in order to achieve effective therapy and enhance patient outcomes. Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are crucial techniques for identifying brain tumors, with each method providing unique benefits. However, depending exclusively on one modality can restrict the precision of diagnosis. This project presents a novel method that integrates MRI and CT scans to improve the detection and categorization of brain tumors. By utilizing a 13-layer Convolution Neural Network and image fusion algorithms, our approach seeks to combine the advantages of both modalities,reducing their respective drawbacks. The workflow entails the act of uploading MRI and CT scans onto an interface, where a Convolutional Neural Network (CNN)applies picture fusion algorithm in the backend. The classification outcome reveals the existence, nature, or absence of a tumor. Moreover, the results can be obtained through a website or mobile app, making it easier and more effective for healthcare professionals to diagnose patients.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. R. Bhavani hold a Master of Engineering (M.E) degree in Applied Electronics from Sathyabama University, Chennai during the period of 2004-2006. Prior to that, pursued B.E. in ECE from Magna college of Engineering, in the year 2003, Chennai. Her research interests primarily revolve around Digital Image Processing, Digital Logic Circuits and ML.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9786207842179
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers L2-9786207842179
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers L2-9786207842179
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9786207842179_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 76 pp. Englisch. Bestandsnummer des Verkäufers 9786207842179
Anzahl: 2 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26402840563
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 410346540
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18402840569
Anzahl: 4 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Brain tumors provide considerable obstacles in the field of healthcare,requiring accurate and prompt diagnosis in order to achieve effective therapy and enhance patient outcomes. Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are crucial techniques for identifying brain tumors, with each method providing unique benefits. However, depending exclusively on one modality can restrict the precision of diagnosis. This project presents a novel method that integrates MRI and CT scans to improve the detection and categorization of brain tumors. By utilizing a 13-layer Convolution Neural Network and image fusion algorithms, our approach seeks to combine the advantages of both modalities,reducing their respective drawbacks. The workflow entails the act of uploading MRI and CT scans onto an interface, where a Convolutional Neural Network (CNN)applies picture fusion algorithm in the backend. The classification outcome reveals the existence, nature, or absence of a tumor. Moreover, the results can be obtained through a website or mobile app, making it easier and more effective for healthcare professionals to diagnose patients.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 76 pp. Englisch. Bestandsnummer des Verkäufers 9786207842179
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Brain tumors provide considerable obstacles in the field of healthcare,requiring accurate and prompt diagnosis in order to achieve effective therapy and enhance patient outcomes. Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are crucial techniques for identifying brain tumors, with each method providing unique benefits. However, depending exclusively on one modality can restrict the precision of diagnosis. This project presents a novel method that integrates MRI and CT scans to improve the detection and categorization of brain tumors. By utilizing a 13-layer Convolution Neural Network and image fusion algorithms, our approach seeks to combine the advantages of both modalities,reducing their respective drawbacks. The workflow entails the act of uploading MRI and CT scans onto an interface, where a Convolutional Neural Network (CNN)applies picture fusion algorithm in the backend. The classification outcome reveals the existence, nature, or absence of a tumor. Moreover, the results can be obtained through a website or mobile app, making it easier and more effective for healthcare professionals to diagnose patients. Bestandsnummer des Verkäufers 9786207842179
Anzahl: 1 verfügbar