Image segmentation is a crucial aspect of clinical decision-making in the medical field. The integration of image segmentation techniques has dramatically enhanced healthcare delivery. Also, the advancement of deep learning, particularly Convolutional Neural Networks (CNNs), has brought about a significant transformation in medical image analysis. These advanced algorithms have shown exceptional abilities in identifying complex patterns and features in medical images, revolutionizing diagnostic imaging. However, the complexity and scale of these models present significant challenges. This requires a substantial amount of computational resources and expert knowledge for successful implementation. Addressing these challenges is crucial to fully exploit the potential of deep learning in the field of medical image segmentation. To address the challenges, this study combines metaheuristic optimization algorithms with deep learning. These algorithms, inspired by natural processes, provide an effective way to optimize the structure and parameters of CNNs, thus making the process of medical image segmentation more efficient.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Image segmentation is a crucial aspect of clinical decision-making in the medical field. The integration of image segmentation techniques has dramatically enhanced healthcare delivery. Also, the advancement of deep learning, particularly Convolutional Neural Networks (CNNs), has brought about a significant transformation in medical image analysis. These advanced algorithms have shown exceptional abilities in identifying complex patterns and features in medical images, revolutionizing diagnostic imaging. However, the complexity and scale of these models present significant challenges. This requires a substantial amount of computational resources and expert knowledge for successful implementation. Addressing these challenges is crucial to fully exploit the potential of deep learning in the field of medical image segmentation. To address the challenges, this study combines metaheuristic optimization algorithms with deep learning. These algorithms, inspired by natural processes, provide an effective way to optimize the structure and parameters of CNNs, thus making the process of medical image segmentation more efficient. 132 pp. Englisch. Bestandsnummer des Verkäufers 9786208441791
Anzahl: 2 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware Books on Demand GmbH, Überseering 33, 22297 Hamburg 132 pp. Englisch. Bestandsnummer des Verkäufers 9786208441791
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Image segmentation is a crucial aspect of clinical decision-making in the medical field. The integration of image segmentation techniques has dramatically enhanced healthcare delivery. Also, the advancement of deep learning, particularly Convolutional Neural Networks (CNNs), has brought about a significant transformation in medical image analysis. These advanced algorithms have shown exceptional abilities in identifying complex patterns and features in medical images, revolutionizing diagnostic imaging. However, the complexity and scale of these models present significant challenges. This requires a substantial amount of computational resources and expert knowledge for successful implementation. Addressing these challenges is crucial to fully exploit the potential of deep learning in the field of medical image segmentation. To address the challenges, this study combines metaheuristic optimization algorithms with deep learning. These algorithms, inspired by natural processes, provide an effective way to optimize the structure and parameters of CNNs, thus making the process of medical image segmentation more efficient. Bestandsnummer des Verkäufers 9786208441791
Anzahl: 2 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9786208441791
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26404394456
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18404394450
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 409808391
Anzahl: 4 verfügbar