En comparación con el aprendizaje automático tradicional y las estadísticas, los métodos causales presentan desafíos únicos. Aprender causalidad puede ser difícil, pero ofrece distintas ventajas que escapan a una mentalidad puramente estadística. Este libro ayuda a liberar todo el potencial de la causalidad.
El libro comienza con las motivaciones básicas del pensamiento causal y una completa introducción a conceptos causales pearlianos, como los modelos causales estructurales, las intervenciones, los contrafactuales, etc. Cada concepto va acompañado de una explicación teórica y una serie de ejercicios prácticos con código Python. A continuación, entra de lleno en el mundo de la estimación del efecto causal, y avanza hacia los métodos de aprendizaje automático modernos.
Paso a paso, descubrirás el ecosistema causal de Python y aprovecharás la potencia de los algoritmos más avanzados. Además, explorarás la mecánica de las huellas que dejan las causas y descubrirás las cuatro familias principales de métodos de descubrimiento causal. El capítulo final ofrece una amplia visión general del futuro de la IA causal, con un examen de retos y oportunidades y una exhaustiva lista de recursos para seguir aprendiendo cada vez más.
Entre otras cosas, este libro permite:
* Dominar los conceptos fundamentales de la inferencia causal.
* Liberar el potencial del proceso de inferencia causal en cuatro pasos de Python.
* Explorar avanzadas técnicas de modelado uplift o de elevación.
* Descubrir los secretos del descubrimiento causal moderno con Python.
* Utilizar la inferencia causal para producir impacto social y beneficios para la comunidad.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 6,24 für den Versand von Spanien nach Deutschland
Versandziele, Kosten & DauerAnbieter: Agapea Libros, Malaga, MA, Spanien
Zustand: New. Idioma/Language: Español. En comparación con el aprendizaje automático tradicional y las estadísticas, los métodos causales presentan desafíos únicos. Aprender causalidad puede ser difícil, pero ofrece distintas ventajas que escapan a una mentalidad puramente estadística. Este libro ayuda a liberar todo el potencial de la causalidad. El libro comienza con las motivaciones básicas del pensamiento causal y una completa introducción a conceptos causales pearlianos, como los modelos causales estructurales, las intervenciones, los contrafactuales, etc. Cada concepto va acompañado de una explicación teórica y una serie de ejercicios prácticos con código Python. A continuación, entra de lleno en el mundo de la estimación del efecto causal, y avanza hacia los métodos de aprendizaje automático modernos. Paso a paso, descubrirás el ecosistema causal de Python y aprovecharás la potencia de los algoritmos más avanzados. Además, explorarás la mecánica de las huellas que dejan las causas y descubrirás las cuatro familias principales de métodos de descubrimiento causal. El capítulo final ofrece una amplia visión general del futuro de la IA causal, con un examen de retos y oportunidades y una exhaustiva lista de recursos para seguir aprendiendo cada vez más. Entre otras cosas, este libro permite: * Dominar los conceptos fundamentales de la inferencia causal. * Liberar el potencial del proceso de inferencia causal en cuatro pasos de Python. * Explorar avanzadas técnicas de modelado uplift o de elevación. * Descubrir los secretos del descubrimiento causal moderno con Python. * Utilizar la inferencia causal para producir impacto social y beneficios para la comunidad. *** Nota: Los envíos a España peninsular, Baleares y Canarias se realizan a través de mensajería urgente. No aceptamos pedidos con destino a Ceuta y Melilla. Bestandsnummer des Verkäufers 24669212
Anzahl: 2 verfügbar
Anbieter: KALAMO BOOKS, Burriana, CS, Spanien
Rustica. Zustand: Nuevo. Bestandsnummer des Verkäufers ANY9788441549203
Anzahl: 1 verfügbar
Anbieter: Imosver, PONTECALDELAS, PO, Spanien
Zustand: Nuevo. En comparación con el aprendizaje automático tradicional y las estadísticas, los métodos causales presentan desafíos únicos. Aprender causalidad puede ser difícil, pero ofrece distintas ventajas que escapan a una mentalidad puramente estadística. Este libro ayuda a liberar todo el potencial de la causalidad.El libro comienza con las motivaciones básicas del pensamiento causal y una completa introducción a conceptos causales pearlianos, como los modelos causales estructurales, las intervenciones, los contrafactuales, etc. Cada concepto va acompañado de una explicación teórica y una serie de ejercicios prácticos con código Python. A continuación, entra de lleno en el mundo de la estimación del efecto causal, y avanza hacia los métodos de aprendizaje automático modernos.Paso a paso, descubrirás el ecosistema causal de Python y aprovecharás la potencia de los algoritmos más avanzados. Además, explorarás la mecánica de las huellas que dejan las causas y descubrirás las cuatro familias principales de métodos de descubrimiento causal. El capítulo final ofrece una amplia visión general del futuro de la IA causal, con un examen de retos y oportunidades y una exhaustiva lista de recursos para seguir aprendiendo cada vez más.Entre otras cosas, este libro permite:* Dominar los conceptos fundamentales de la inferencia causal.* Liberar el potencial del proceso de inferencia causal en cuatro pasos de Python.* Explorar avanzadas técnicas de modelado uplift o de elevación.* Descubrir los secretos del descubrimiento causal moderno con Python.* Utilizar la inferencia causal para producir impacto social y beneficios para la comunidad. Bestandsnummer des Verkäufers CIM0019805
Anzahl: 1 verfügbar
Anbieter: Antártica, Madrid, M, Spanien
Rustica (tapa blanda). Zustand: New. Zustand des Schutzumschlags: Nuevo. 01. En comparación con el aprendizaje automático tradicional y las estadísticas, los métodos causales presentan desafíos únicos. Aprender causalidad puede ser difícil, pero ofrece distintas ventajas que escapan a una mentalidad puramente estadística. Este libro ayuda a liberar todo el potencial de la causalidad.El libro comienza con las motivaciones básicas del pensamiento causal y una completa introducción a conceptos causales pearlianos, como los modelos causales estructurales, las intervenciones, los contrafactuales, etc. Cada concepto va acompañado de una explicación teórica y una serie de ejercicios prácticos con código Python. A continuación, entra de lleno en el mundo de la estimación del efecto causal, y avanza hacia los métodos de aprendizaje automático modernos.Paso a paso, descubrirás el ecosistema causal de Python y aprovecharás la potencia de los algoritmos más avanzados. Además, explorarás la mecánica de las huellas que dejan las causas y descubrirás las cuatro familias principales de métodos de descubrimiento causal. El capítulo final ofrece una amplia visión general del futuro de la IA causal, co. LIBRO. Bestandsnummer des Verkäufers 1434609
Anzahl: 1 verfügbar
Anbieter: Libros Tobal, Ajalvir, M, Spanien
Zustand: Nuevo. TITULOS ESPECIALES - CONCEPTOS DE PROGRAMACION, APRENDIZAJE DE LA PROGR# PROGRAMACION ORIENTADA A OBJETOS (POO)# PROGRAMACION DE WEB# INTELIGENCIA ARTIFICIAL# APRENDIZAJE AUTOMATICO. Bestandsnummer des Verkäufers 9788441549203
Anzahl: 8 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Bestandsnummer des Verkäufers V9788441549203
Anzahl: 2 verfügbar
Anbieter: Grand Eagle Retail, Mason, OH, USA
Zustand: new. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9788441549203
Anzahl: 1 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. Bestandsnummer des Verkäufers V9788441549203
Anzahl: 2 verfügbar
Anbieter: AussieBookSeller, Truganina, VIC, Australien
Zustand: new. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Bestandsnummer des Verkäufers 9788441549203
Anzahl: 1 verfügbar
Anbieter: Gabo Books, COLUMBUS, OH, USA
Soft cover. Zustand: New. Zustand des Schutzumschlags: New. Bestandsnummer des Verkäufers 504
Anzahl: 5 verfügbar