Non-commutative integration has its origin in the classical papers of Murray and von Neumann on rings of operators, and was introduced because of unsolved problems in unitary group representations and the elucidation of various aspects of quantum-mechanical formalism, together with formal calculus in such operator rings. These papers emphasized the interest in 1I -factors and pOinted out the remarkable behavior and 1 algebraic structure of the set of all unbounded closed operators a. ffiliated to such rings. The absence of power tools in functional analysis - mainly settled in their definitive form by A. Grothendieck around 1950-195- together with the pathological manipulation of algebraic operations on closed operators in Hilbert spaces, has limited ring-theory to the study of algebras of bounded operators with the main objective the difficult question of classifica tion up to isomorphisms of factors. This material has permitted a rigorous study of discrete systems in statistical mechanics but appears to be less convincing in other domains of physics (in the algebraic approach to field theory, for example). The striking role of Hamiltonians, Schrodinger operators and Lie group invariant properties in such areas of physics disappears in the so called C*-approach.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Non-commutative integration has its origin in the classical papers of Murray and von Neumann on rings of operators, and was introduced because of unsolved problems in unitary group representations and the elucidation of various aspects of quantum-mechanical formalism, together with formal calculus in such operator rings. These papers emphasized the interest in 1I -factors and pOinted out the remarkable behavior and 1 algebraic structure of the set of all unbounded closed operators a. ffiliated to such rings. The absence of power tools in functional analysis - mainly settled in their definitive form by A. Grothendieck around 1950-195- together with the pathological manipulation of algebraic operations on closed operators in Hilbert spaces, has limited ring-theory to the study of algebras of bounded operators with the main objective the difficult question of classifica tion up to isomorphisms of factors. This material has permitted a rigorous study of discrete systems in statistical mechanics but appears to be less convincing in other domains of physics (in the algebraic approach to field theory, for example). The striking role of Hamiltonians, Schrodinger operators and Lie group invariant properties in such areas of physics disappears in the so called C*-approach.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Non-commutative integration has its origin in the classical papers of Murray and von Neumann on rings of operators, and was introduced because of unsolved problems in unitary group representations and the elucidation of various aspects of quantum-mechanical. Bestandsnummer des Verkäufers 5814981
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -Non-commutative integration has its origin in the classical papers of Murray and von Neumann on rings of operators, and was introduced because of unsolved problems in unitary group representations and the elucidation of various aspects of quantum-mechanical formalism, together with formal calculus in such operator rings. These papers emphasized the interest in 1I -factors and pOinted out the remarkable behavior and 1 algebraic structure of the set of all unbounded closed operators a. ffiliated to such rings. The absence of power tools in functional analysis - mainly settled in their definitive form by A. Grothendieck around 1950-195- together with the pathological manipulation of algebraic operations on closed operators in Hilbert spaces, has limited ring-theory to the study of algebras of bounded operators with the main objective the difficult question of classifica tion up to isomorphisms of factors. This material has permitted a rigorous study of discrete systems in statistical mechanics but appears to be less convincing in other domains of physics (in the algebraic approach to field theory, for example). The striking role of Hamiltonians, Schrodinger operators and Lie group invariant properties in such areas of physics disappears in the so called C\*-approach.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 216 pp. Englisch. Bestandsnummer des Verkäufers 9789027718150
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Non-commutative integration has its origin in the classical papers of Murray and von Neumann on rings of operators, and was introduced because of unsolved problems in unitary group representations and the elucidation of various aspects of quantum-mechanical formalism, together with formal calculus in such operator rings. These papers emphasized the interest in 1I -factors and pOinted out the remarkable behavior and 1 algebraic structure of the set of all unbounded closed operators a. ffiliated to such rings. The absence of power tools in functional analysis - mainly settled in their definitive form by A. Grothendieck around 1950-195- together with the pathological manipulation of algebraic operations on closed operators in Hilbert spaces, has limited ring-theory to the study of algebras of bounded operators with the main objective the difficult question of classifica tion up to isomorphisms of factors. This material has permitted a rigorous study of discrete systems in statistical mechanics but appears to be less convincing in other domains of physics (in the algebraic approach to field theory, for example). The striking role of Hamiltonians, Schrodinger operators and Lie group invariant properties in such areas of physics disappears in the so called C\*-approach. 216 pp. Englisch. Bestandsnummer des Verkäufers 9789027718150
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Non-commutative integration has its origin in the classical papers of Murray and von Neumann on rings of operators, and was introduced because of unsolved problems in unitary group representations and the elucidation of various aspects of quantum-mechanical formalism, together with formal calculus in such operator rings. These papers emphasized the interest in 1I -factors and pOinted out the remarkable behavior and 1 algebraic structure of the set of all unbounded closed operators a. ffiliated to such rings. The absence of power tools in functional analysis - mainly settled in their definitive form by A. Grothendieck around 1950-195- together with the pathological manipulation of algebraic operations on closed operators in Hilbert spaces, has limited ring-theory to the study of algebras of bounded operators with the main objective the difficult question of classifica tion up to isomorphisms of factors. This material has permitted a rigorous study of discrete systems in statistical mechanics but appears to be less convincing in other domains of physics (in the algebraic approach to field theory, for example). The striking role of Hamiltonians, Schrodinger operators and Lie group invariant properties in such areas of physics disappears in the so called C\*-approach. Bestandsnummer des Verkäufers 9789027718150
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9789027718150_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Apr0316110331584
Anzahl: Mehr als 20 verfügbar
Anbieter: BennettBooksLtd, North Las Vegas, NV, USA
Hardcover. Zustand: New. In shrink wrap. Looks like an interesting title! Bestandsnummer des Verkäufers SL-9027718156
Anzahl: 1 verfügbar