The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. One notable exception, however, is that of spin electronics (also called spintronics, magnetoelectronics or magnetronics), wherein information is carried by electron spin in addition to, or in place of, electron charge. It is now well established in scientific and engineering communities that Moore's Law, having been an excellent predictor of integrated circuit density and computer performance since the 1970s, now faces great challenges as the scale of electronic devices has been reduced to the level where quantum effects become significant factors in device operation. Electron spin is one such effect that offers the opportunity to continue the gains predicted by Moore's Law, by taking advantage of the confluence of magnetics and semiconductor electronics in the newly emerging discipline of spin electronics. From a fundamental viewpoine, spin-polarization transport in a material occurs when there is an imbalance of spin populations at the Fermi energy. In ferromagnetic metals this imbalance results from a shift in the energy states available to spin-up and spin-down electrons. In practical applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a normal metal, or to tunnel through an insulating barrier.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. One notable exception, however, is that of spin electronics (also called spintronics, magnetoelectronics or magnetronics), wherein information is carried by electron spin in addition to, or in place of, electron charge. It is now well established in scientific and engineering communities that Moore's Law, having been an excellent predictor of integrated circuit density and computer performance since the 1970s, now faces great challenges as the scale of electronic devices has been reduced to the level where quantum effects become significant factors in device operation. Electron spin is one such effect that offers the opportunity to continue the gains predicted by Moore's Law, by taking advantage of the confluence of magnetics and semiconductor electronics in the newly emerging discipline of spin electronics. From a fundamental viewpoine, spin-polarization transport in a material occurs when there is an imbalance of spin populations at the Fermi energy. In ferromagnetic metals this imbalance results from a shift in the energy states available to spin-up and spin-down electrons. In practical applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a normal metal, or to tunnel through an insulating barrier.
This book is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magneto electronics and devices. Spin Electronics is unique in that it combines tutorial and introductory information on the significance of spin electronics research and applications development in this rapidly developing field. It reviews profound technical and policy implications of spin-based devices for the future of semiconductor electronics, non-volatile computer memory, nanotechnology, and quantum computing and communications. For example, the report discusses the potential for spin electronics to help maintain the progress in price and performance of electronics and computers described in Moore's Law. Finally, information on funding and level of effort in the laboratories visited by the panel is provided.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,43 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Apr0316110337818
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9789048165131_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. One notable exception, however, is that of spin electronics (also called spintronics, magnetoelectronics or magnetronics), wherein information is carried by electron spin in addition to, or in place of, electron charge. It is now well established in scientific and engineering communities that Moore's Law, having been an excellent predictor of integrated circuit density and computer performance since the 1970s, now faces great challenges as the scale of electronic devices has been reduced to the level where quantum effects become significant factors in device operation. Electron spin is one such effect that offers the opportunity to continue the gains predicted by Moore's Law, by taking advantage of the confluence of magnetics and semiconductor electronics in the newly emerging discipline of spin electronics. From a fundamental viewpoine, spin-polarization transport in a material occurs when there is an imbalance of spin populations at the Fermi energy. In ferromagnetic metals this imbalance results from a shift in the energy states available to spin-up and spin-down electrons. In practical applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a normal metal, or to tunnel through an insulating barrier. 228 pp. Englisch. Bestandsnummer des Verkäufers 9789048165131
Anzahl: 2 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 224. Bestandsnummer des Verkäufers 263063326
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. Bestandsnummer des Verkäufers 5820363
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 224 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Bestandsnummer des Verkäufers 5833153
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 224. Bestandsnummer des Verkäufers 183063316
Anzahl: 4 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 245 pages. 9.00x6.00x0.51 inches. In Stock. Bestandsnummer des Verkäufers x-904816513X
Anzahl: 2 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Spin Electronics | David D. Awschalom (u. a.) | Taschenbuch | xxiv | Englisch | 2010 | Springer | EAN 9789048165131 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Bestandsnummer des Verkäufers 107245011
Anzahl: 5 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. One notable exception, however, is that of spin electronics (also called spintronics, magnetoelectronics or magnetronics), wherein information is carried by electron spin in addition to, or in place of, electron charge. It is now well established in scientific and engineering communities that Moore's Law, having been an excellent predictor of integrated circuit density and computer performance since the 1970s, now faces great challenges as the scale of electronic devices has been reduced to the level where quantum effects become significant factors in device operation. Electron spin is one such effect that offers the opportunity to continue the gains predicted by Moore's Law, by taking advantage of the confluence of magnetics and semiconductor electronics in the newly emerging discipline of spin electronics. From a fundamental viewpoine, spin-polarization transport in a material occurs when there is an imbalance of spin populations at the Fermi energy. In ferromagnetic metals this imbalance results from a shift in the energy states available to spin-up and spin-down electrons. In practical applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a normal metal, or to tunnel through an insulating barrier.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 228 pp. Englisch. Bestandsnummer des Verkäufers 9789048165131
Anzahl: 1 verfügbar