Verwandte Artikel zu Proof Methods for Modal and Intuitionistic Logics (Synthese...

Proof Methods for Modal and Intuitionistic Logics (Synthese Library): 169 - Softcover

 
9789048183814: Proof Methods for Modal and Intuitionistic Logics (Synthese Library): 169

Inhaltsangabe

"Necessity is the mother of invention. " Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We also consider some quasi-regular logics, including S2 and S3. Virtually all of these proof procedures are studied in both propositional and first-order versions (generally with and without the Barcan formula). Finally, we present the full variety of proof methods for Intuitionistic logic (and of course Classical logic too). We actually give two quite different kinds of tableau systems for the logics we consider, two kinds of Gentzen sequent calculi, and two kinds of natural deduction systems. Each of the two tableau systems has its own uses; each provides us with different information about the logics involved. They complement each other more than they overlap. Of the two Gentzen systems, one is of the conventional sort, common in the literature.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

"Necessity is the mother of invention. " Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We also consider some quasi-regular logics, including S2 and S3. Virtually all of these proof procedures are studied in both propositional and first-order versions (generally with and without the Barcan formula). Finally, we present the full variety of proof methods for Intuitionistic logic (and of course Classical logic too). We actually give two quite different kinds of tableau systems for the logics we consider, two kinds of Gentzen sequent calculi, and two kinds of natural deduction systems. Each of the two tableau systems has its own uses; each provides us with different information about the logics involved. They complement each other more than they overlap. Of the two Gentzen systems, one is of the conventional sort, common in the literature.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9789027715739: Proof Methods for Modal and Intuitionistic Logics: 169 (Synthese Library)

Vorgestellte Ausgabe

ISBN 10:  9027715734 ISBN 13:  9789027715739
Verlag: Springer, 1983
Hardcover

Suchergebnisse für Proof Methods for Modal and Intuitionistic Logics (Synthese...

Foto des Verkäufers

M. Fitting
Verlag: Springer Netherlands, 2010
ISBN 10: 9048183812 ISBN 13: 9789048183814
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Necessity is the mother of invention. Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural . Bestandsnummer des Verkäufers 5822204

Verkäufer kontaktieren

Neu kaufen

EUR 180,07
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

M. Fitting
ISBN 10: 9048183812 ISBN 13: 9789048183814
Neu Taschenbuch
Print-on-Demand

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -'Necessity is the mother of invention. ' Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We also consider some quasi-regular logics, including S2 and S3. Virtually all of these proof procedures are studied in both propositional and first-order versions (generally with and without the Barcan formula). Finally, we present the full variety of proof methods for Intuitionistic logic (and of course Classical logic too). We actually give two quite different kinds of tableau systems for the logics we consider, two kinds of Gentzen sequent calculi, and two kinds of natural deduction systems. Each of the two tableau systems has its own uses; each provides us with different information about the logics involved. They complement each other more than they overlap. Of the two Gentzen systems, one is of the conventional sort, common in the literature.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 568 pp. Englisch. Bestandsnummer des Verkäufers 9789048183814

Verkäufer kontaktieren

Neu kaufen

EUR 213,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Fitting, M.
Verlag: Springer, 2010
ISBN 10: 9048183812 ISBN 13: 9789048183814
Neu Softcover

Anbieter: Best Price, Torrance, CA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9789048183814

Verkäufer kontaktieren

Neu kaufen

EUR 191,46
Währung umrechnen
Versand: EUR 25,52
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

M. Fitting
ISBN 10: 9048183812 ISBN 13: 9789048183814
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - 'Necessity is the mother of invention. ' Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We also consider some quasi-regular logics, including S2 and S3. Virtually all of these proof procedures are studied in both propositional and first-order versions (generally with and without the Barcan formula). Finally, we present the full variety of proof methods for Intuitionistic logic (and of course Classical logic too). We actually give two quite different kinds of tableau systems for the logics we consider, two kinds of Gentzen sequent calculi, and two kinds of natural deduction systems. Each of the two tableau systems has its own uses; each provides us with different information about the logics involved. They complement each other more than they overlap. Of the two Gentzen systems, one is of the conventional sort, common in the literature. Bestandsnummer des Verkäufers 9789048183814

Verkäufer kontaktieren

Neu kaufen

EUR 223,11
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

M. Fitting
Verlag: Springer, Dordrecht, 2010
ISBN 10: 9048183812 ISBN 13: 9789048183814
Neu Paperback Erstausgabe

Anbieter: Grand Eagle Retail, Mason, OH, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. "Necessity is the mother of invention. " Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We also consider some quasi-regular logics, including S2 and S3. Virtually all of these proof procedures are studied in both propositional and first-order versions (generally with and without the Barcan formula). Finally, we present the full variety of proof methods for Intuitionistic logic (and of course Classical logic too). We actually give two quite different kinds of tableau systems for the logics we consider, two kinds of Gentzen sequent calculi, and two kinds of natural deduction systems. Each of the two tableau systems has its own uses; each provides us with different information about the logics involved. They complement each other more than they overlap. Of the two Gentzen systems, one is of the conventional sort, common in the literature. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9789048183814

Verkäufer kontaktieren

Neu kaufen

EUR 199,33
Währung umrechnen
Versand: EUR 63,85
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Fitting, M.
Verlag: Springer, 2010
ISBN 10: 9048183812 ISBN 13: 9789048183814
Neu Softcover

Anbieter: Lucky's Textbooks, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers ABLIING23Apr0316110339417

Verkäufer kontaktieren

Neu kaufen

EUR 202,29
Währung umrechnen
Versand: EUR 63,85
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

M. Fitting
ISBN 10: 9048183812 ISBN 13: 9789048183814
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -'Necessity is the mother of invention. ' Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We also consider some quasi-regular logics, including S2 and S3. Virtually all of these proof procedures are studied in both propositional and first-order versions (generally with and without the Barcan formula). Finally, we present the full variety of proof methods for Intuitionistic logic (and of course Classical logic too). We actually give two quite different kinds of tableau systems for the logics we consider, two kinds of Gentzen sequent calculi, and two kinds of natural deduction systems. Each of the two tableau systems has its own uses; each provides us with different information about the logics involved. They complement each other more than they overlap. Of the two Gentzen systems, one is of the conventional sort, common in the literature. 568 pp. Englisch. Bestandsnummer des Verkäufers 9789048183814

Verkäufer kontaktieren

Neu kaufen

EUR 318,86
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

M. Fitting
Verlag: Springer, Dordrecht, 2010
ISBN 10: 9048183812 ISBN 13: 9789048183814
Neu Paperback Erstausgabe

Anbieter: AussieBookSeller, Truganina, VIC, Australien

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. "Necessity is the mother of invention. " Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We also consider some quasi-regular logics, including S2 and S3. Virtually all of these proof procedures are studied in both propositional and first-order versions (generally with and without the Barcan formula). Finally, we present the full variety of proof methods for Intuitionistic logic (and of course Classical logic too). We actually give two quite different kinds of tableau systems for the logics we consider, two kinds of Gentzen sequent calculi, and two kinds of natural deduction systems. Each of the two tableau systems has its own uses; each provides us with different information about the logics involved. They complement each other more than they overlap. Of the two Gentzen systems, one is of the conventional sort, common in the literature. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Bestandsnummer des Verkäufers 9789048183814

Verkäufer kontaktieren

Neu kaufen

EUR 304,15
Währung umrechnen
Versand: EUR 31,50
Von Australien nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb