This book explains how to solve partial differential equations numerically using single and multidomain spectral methods. It shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
David Kopriva is Professor of Mathematics at the Florida State University, where he has taught since 1985. He is an expert in the development, implementation and application of high order spectral multi-domain methods for time dependent problems. In 1986 he developed the first multi-domain spectral method for hyperbolic systems, which was applied to the Euler equations of gas dynamics.
This book offers a systematic and self-contained approach to solve partial differential equations numerically using single and multidomain spectral methods. It contains detailed algorithms in pseudocode for the application of spectral approximations to both one and two dimensional PDEs of mathematical physics describing potentials, transport, and wave propagation. David Kopriva, a well-known researcher in the field with extensive practical experience, shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries. The book addresses computational and applications scientists, as it emphasizes the practical derivation and implementation of spectral methods over abstract mathematics. It is divided into two parts: First comes a primer on spectral approximation and the basic algorithms, including FFT algorithms, Gauss quadrature algorithms, and how to approximate derivatives. The second part shows how to use those algorithms to solve steady and time dependent PDEs in one and two space dimensions. Exercises and questions at the end of each chapter encourage the reader to experiment with the algorithms.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. First book to cover multidomain spectral methods for the numerical solution of time-dependent 1D and 2D partial differential equationsPresented without too much abstract mathematics and minutaeContains a set of basic examples as building bl. Bestandsnummer des Verkäufers 5822305
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 414. Bestandsnummer des Verkäufers 2648023947
Anzahl: 1 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 414. Bestandsnummer des Verkäufers 1848023937
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 414 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam This item is printed on demand. Bestandsnummer des Verkäufers 44791380
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9789048184842_new
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book is aimed to be both a textbook for graduate students and a starting point for applicationsscientists. It is designedto show how to implementspectral methods to approximate the solutions of partial differential equations. It presents a syst- atic development of the fundamental algorithms needed to write spectral methods codes to solve basic problems of mathematical physics, including steady potentials, transport, and wave propagation. As such, it is meant to supplement, not replace, more general monographs on spectral methods like the recently updated ¿Spectral Methods: Fundamentals in Single Domains¿ and ¿Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics¿ by Canuto, Hussaini, Quarteroni and Zang, which provide detailed surveys of the variety of methods, their performance and theory. I was motivated by comments that I have heard over the years that spectral me- ods are ¿too hard to implement.¿ I hope to dispel this view¿or at least to remove the ¿toö. Although it is true that a spectral code is harder to hack together than a s- ple nite difference code (at least a low order nite difference method on a square domain), I show that only a few fundamental algorithms for interpolation, differen- ation, FFT and quadrature¿the subjects of basic numerical methods courses¿form the building blocks of any spectral code, even for problems in complex geometries. Ipresentthealgorithmsnotonlytosolveproblemsin1D,but2Daswell,toshowthe exibility of spectral methods and to make as straightforward as possible the tr- sition from simple, exploratory programs that illustrate the behavior of the methods to application programs.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 412 pp. Englisch. Bestandsnummer des Verkäufers 9789048184842
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book offers a systematic and self-contained approach to solvepartial differential equations numerically using single and multidomain spectralmethods. It contains detailed algorithms in pseudocode for the applicationof spectral approximations to both one and two dimensional PDEsof mathematical physics describing potentials,transport, and wave propagation. David Kopriva, a well-known researcherin the field with extensive practical experience, shows how only a fewfundamental algorithms form the building blocks of any spectral code, evenfor problems with complex geometries. The book addresses computationaland applications scientists, as it emphasizes thepractical derivation and implementation of spectral methods over abstract mathematics. It is divided into two parts: First comes a primer on spectralapproximation and the basic algorithms, including FFT algorithms, Gaussquadrature algorithms, and how to approximate derivatives. The secondpart shows how to use those algorithms to solve steady and time dependent PDEs in one and two space dimensions. Exercises and questions at theend of each chapter encourage the reader to experiment with thealgorithms. 412 pp. Englisch. Bestandsnummer des Verkäufers 9789048184842
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book offers a systematic and self-contained approach to solvepartial differential equations numerically using single and multidomain spectralmethods. It contains detailed algorithms in pseudocode for the applicationof spectral approximations to both one and two dimensional PDEsof mathematical physics describing potentials,transport, and wave propagation. David Kopriva, a well-known researcherin the field with extensive practical experience, shows how only a fewfundamental algorithms form the building blocks of any spectral code, evenfor problems with complex geometries. The book addresses computationaland applications scientists, as it emphasizes thepractical derivation and implementation of spectral methods over abstract mathematics. It is divided into two parts: First comes a primer on spectralapproximation and the basic algorithms, including FFT algorithms, Gaussquadrature algorithms, and how to approximate derivatives. The secondpart shows how to use those algorithms to solve steady and time dependent PDEs in one and two space dimensions. Exercises and questions at theend of each chapter encourage the reader to experiment with thealgorithms. Bestandsnummer des Verkäufers 9789048184842
Anzahl: 1 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9789048184842
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Apr0316110339505
Anzahl: Mehr als 20 verfügbar