Description
Deep learning is revolutionizing how we solve complex problems, and PyTorch has emerged as a leading framework for its ease of use and flexibility. This book is designed to bridge the gap between theory and practice, providing a hands-on approach to understanding deep learning with PyTorch. It covers fundamental and advanced topics, including object detection, NLP, GANs, and time series forecasting.
The book begins with foundational deep learning concepts and guides you through setting up PyTorch. You will learn to manipulate tensors, load data, build models, and understand computer vision with multi-object detection using YOLO to enhance image recognition through transfer learning techniques. You will also analyze generative models with GANs for data augmentation and venture into audio processing with text-to-speech and speech-to-text using TorchAudio. Learn NLP tasks like text classification, summarization, sentiment analysis, and question answering with pre-trained models like BERT. Finally, learn to tackle time series forecasting using RNNs, LSTMs, CNNs, and transformers.
By the end of this book, you will be equipped with the practical skills and knowledge to confidently build and deploy deep learning solutions across various domains, helping you innovate in the ever-evolving field of artificial intelligence.
What you will learn
● Implement deep learning models for image, text, and speech tasks.
● Build and optimize AI workflows using PyTorch efficiently.
● Apply transfer learning techniques for improved model performance.
● Develop GANs for generating high-quality synthetic data.
● Use NLP techniques for language processing and sentiment analysis.
● Forecast time series data using LSTMs and deep learning models.
Who this book is for
This book is for AI enthusiasts, data scientists, and engineers seeking practical knowledge of deep learning. Whether you are a beginner exploring AI or a seasoned professional optimizing deep learning architectures, this book provides essential techniques, tools, and best practices to help you excel in the field of artificial intelligence.
Table of Contents
1. A Primer on Deep Learning
2. Getting PyTorch Setup and Running
3. Multi-object Detection
4. Image Labeling Using Transfer Learning
5. Harnessing Generative Adversarial Network for Data Augmentation
6. Building Text-to-speech Models
7. Converting Speech-to-text Using TorchAudio
8. Text Analysis, Categorization, and Language Translation
9. Text Summarization and Sentiment Analysis
10. Time Series Forecasting Using Deep Learning
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Deepak Gowda is a distinguished engineering leader and hands-on technology geek with over 20 years of experience, including a decade focused on artificial intelligence (AI) and machine learning (ML).
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 50086635-n
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers GB-9789365897258
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Practical Deep Learning with PyTorch: PyTorch implementation for computer vision, NLP, audio, and language translation (English Edition). Book. Bestandsnummer des Verkäufers BBS-9789365897258
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers GB-9789365897258
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 50086635
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Paperback. Zustand: new. Paperback. The book begins with foundational deep learning concepts and guides you through setting up PyTorch. You will learn to manipulate tensors, load data, build models, and understand computer vision with multi-object detection using YOLO to enhance image recognition through transfer learning techniques. You will also analyze generative models with GANs for data augmentation and venture into audio processing with text-to-speech and speech-to-text using TorchAudio. Learn NLP tasks like text classification, summarization, sentiment analysis, and question answering with pre-trained models like BERT. Finally, learn to tackle time series forecasting using RNNs, LSTMs, CNNs, and transformers. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9789365897258
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers LU-9789365897258
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 286 pages. 7.50x0.65x9.25 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __9365897254
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9789365897258_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 50086635-n
Anzahl: Mehr als 20 verfügbar