Description
Mastering New Age Computer Vision is a comprehensive guide that explores the latest advancements in computer vision, a field that is enabling machines to not only see but also understand and interpret the visual world in increasingly sophisticated ways, guiding you from foundational concepts to practical applications.
This book explores cutting-edge computer vision techniques, starting with zero-shot and few-shot learning, DETR, and DINO for object detection. It covers advanced segmentation models like Segment Anything and Vision Transformers, along with YOLO and CLIP. Using PyTorch, readers will learn image regression, multi-task learning, multi-instance learning, and deep metric learning. Hands-on coding examples, dataset preparation, and optimization techniques help apply these methods in real-world scenarios. Each chapter tackles key challenges, introduces architectural innovations, and improves performance in object detection, segmentation, and vision-language tasks.
By the time you have turned the final page of this book, you will be a confident computer vision practitioner, armed with a comprehensive grasp of core principles and the ability to apply cutting-edge techniques to solve real-world problems. You will be prepared to develop innovative solutions across a broad spectrum of computer vision challenges, actively contributing to the ongoing advancements in this dynamic field.
Key Features
● Master PyTorch for image processing, segmentation, and object detection.
● Explore advanced computer vision techniques like ViT and panoptic models.
● Apply multi-tasking, metric, bilinear pooling, and self-supervised learning in real-world scenarios.
What you will learn
● Use PyTorch for both basic and advanced image processing.
● Build object detection models using CNNs and modern frameworks.
● Apply multi-task and multi-instance learning to complex datasets.
● Develop segmentation models, including panoptic segmentation.
● Improve feature representation with metric learning and bilinear pooling.
● Explore transformers and self-supervised learning for computer vision.
Who this book is for
This book is for data scientists, AI practitioners, and researchers with a basic understanding of Python programming and ML concepts. Familiarity with deep learning frameworks like PyTorch and foundational knowledge of computer vision will help readers fully grasp the advanced techniques discussed.
Table of Contents
1. Evolution of New Age Computer Vision Models
2. Image Processing with PyTorch
3. Designing of Advanced Computer Vision Techniques
4. Designing Superior Computer Vision Techniques
5. Advanced Object Detection with FPN, RPN, and DetectoRS
6. Multi-instance Learning
7. More Advanced Multi-instance Learning
8. Beyond Classical Segmentation Panoptic Segmentation with SAM
9. Crafting Deep Metric Learning in Embedding Space
10. Navigating the Realm of Metric Learning
11. Multi-tasking with Multi-task Learning
12. Fine-grained Bilinear CNN
13. The Rise of Self-supervised Learning
14. Advancements in Computer Vision Landscape
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Zonunfeli Ralte, known as Feli, is an accomplished AI leader with an extraordinary career spanning data science, artificial intelligence, and generative AI. With a Master's in Business Administration and Economics, and 16 years of professional experience across data science, analytics, finance, and AI, she has established herself as a trailblazer in her field.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,80 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 5,97 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Bestandsnummer des Verkäufers NW9789365898408
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering. Bestandsnummer des Verkäufers 9789365898408
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9789365898408_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Mastering New Age Computer Vision: Advanced techniques in computer vision object detection, segmentation, and deep learning (English Edition) 1.61. Book. Bestandsnummer des Verkäufers BBS-9789365898408
Anzahl: 5 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 49825020-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 49825020-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 49825020
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 426 pages. 7.50x0.96x9.25 inches. In Stock. Bestandsnummer des Verkäufers __9365898404
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 49825020
Anzahl: Mehr als 20 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Paperback. Zustand: new. Paperback. This book explores cutting-edge computer vision techniques, starting with zero-shot and few-shot learning, DETR, and DINO for object detection. It covers advanced segmentation models like Segment Anything and Vision Transformers, along with YOLO and CLIP. Using PyTorch, readers will learn image regression, multi-task learning, multi-instance learning, and deep metric learning. Hands-on coding examples, dataset preparation, and optimization techniques help apply these methods in real-world scenarios. Each chapter tackles key challenges, introduces architectural innovations, and improves performance in object detection, segmentation, and vision-language tasks. Master PyTorch for image processing, segmentation, and object detection. Explore advanced computer vision techniques like ViT and panoptic models. Apply multi-tasking, metric, bilinear pooling, and self-supervised learning in real-world scenarios. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9789365898408
Anzahl: 1 verfügbar