Make use of the most advanced machine learning techniques to perform NLP and feature extraction
Key Features
● Learn about pre-trained models, deep learning, and transfer learning for NLP applications.
● All-in-one knowledge guide for feature engineering, NLP models, and pre-processing techniques.
● Includes use cases, enterprise deployments, and a range of Python based demonstrations.
Description
Natural Language Processing (NLP) has proven to be useful in a wide range of applications. Because of this, extracting information from text data sets requires attention to methods, techniques, and approaches.
'Python Text Mining' includes a number of application cases, demonstrations, and approaches that will help you deepen your understanding of feature extraction from data sets. You will get an understanding of good information retrieval, a critical step in accomplishing many machine learning tasks. We will learn to classify text into discrete segments solely on the basis of model properties, not on the basis of user-supplied criteria. The book will walk you through many methodologies, such as classification, that will enable you to rapidly construct recommendation engines, subject segmentation, and sentiment analysis applications. Toward the end, we will also look at machine translation and transfer learning.
By the end of this book, you'll know exactly how to gather web-based text, process it, and then apply it to the development of NLP applications.
What you will learn
● Practice how to process raw data and transform it into a usable format.
● Best techniques to convert text to vectors and then transform into word embeddings.
● Unleash ML and DL techniques to perform sentiment analysis.
● Build modern recommendation engines using classification techniques.
Who this book is for
This book is a good place to start with examples, explanations, and exercises for anyone interested in learning more about advanced text mining and natural language processing techniques. It is suggested but not required that you have some prior programming experience.
Table of Contents
1. Basic Text Processing Techniques
2. Text to Numbers
3. Word Embeddings
4. Topic Modeling
5. Unsupervised Sentiment Classification
6. Text Classification Using ML
7. Text Classification Using Deep learning
8. Recommendation engine
9. Transfer Learning
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Alexandra George is an NLP trainer and has main experience in solving real-world NLP applications in Salesforce. He is an engineer, and high-tech who primarily works on data science, analytics, application development, and building intelligent systems. Alexandra research focuses on data mining, text mining as well as Machine Learning and Deep Learning applications
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 7,82 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 4,54 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: ThriftBooks-Atlanta, AUSTELL, GA, USA
Paperback. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.22. Bestandsnummer des Verkäufers G9389898781I4N00
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9789389898781
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9789389898781
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. KlappentextrnrnNatural Language Processing (NLP) has proven to be useful in a wide range of applications. Because of this, extracting information from text data sets requires attention to methods, techniques, and approaches.n Python Text Mining . Bestandsnummer des Verkäufers 578195549
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9789389898781_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9789389898781
Anzahl: 10 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Python Text Mining: Perform Text Processing, Word Embedding, Text Classification and Machine Translation 1.22. Book. Bestandsnummer des Verkäufers BBS-9789389898781
Anzahl: 5 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 44376964-n
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Natural Language Processing (NLP) has proven to be useful in a wide range of applications. Because of this, extracting information from text data sets requires attention to methods, techniques, and approaches.'Python Text Mining' includes a number of application cases, demonstrations, and approaches that will help you deepen your understanding of feature extraction from data sets. You will get an understanding of good information retrieval, a critical step in accomplishing many machine learning tasks. We will learn to classify text into discrete segments solely on the basis of model properties, not on the basis of user-supplied criteria. The book will walk you through many methodologies, such as classification, that will enable you to rapidly construct recommendation engines, subject segmentation, and sentiment analysis applications. Toward the end, we will also look at machine translation and transfer learning.By the end of this book, you'll know exactly how to gather web-based text, process it, and then apply it to the development of NLP applications.1. Basic Text Processing Techniques2. Text to Numbers3. Word Embeddings4. Topic Modeling5. Unsupervised Sentiment Classification6. Text Classification Using ML7. Text Classification Using Deep learning8. Recommendation engine9. Transfer Learning. Bestandsnummer des Verkäufers 9789389898781
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 44376964-n
Anzahl: Mehr als 20 verfügbar