The investigation of many mathematical problems is significantly simplified if it is possible to reduce them to equations involving continuous or com pletely continuous operators in function spaces. In particular, this is true for non-linear boundary value problems and for integro-differential and integral equations. To effect a transformation to equations with continuous or completely continuous operators, it is usually necessary to reduce the original problem to one involving integral equations. Here, negative and fractional powers of those unbounded differential operators which constitute 'principal parts' of the original problem, are used in an essential way. Next there is chosen or constructed a function space in which the corresponding integral oper ator possesses sufficiently good properties. Once such a space is found, the original problem can often be analyzed by applying general theorems (Fredholm theorems in the study of linear equations, fixed point principles in the study of non-linear equations, methods of the theory of cones in the study of positive solutions, etc.). In other words, the investigation of many problems is effectively divided into three independent parts: transformation to an integral equation, investi gation of the corresponding integral expression as an operator acting in function spaces, and, finally, application of general methods of functional analysis to the investigation of the linear and non-linear equations.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The investigation of many mathematical problems is significantly simplified if it is possible to reduce them to equations involving continuous or com pletely continuous operators in function spaces. In particular, this is true for non-linear boundary value problems and for integro-differential and integral equations. To effect a transformation to equations with continuous or completely continuous operators, it is usually necessary to reduce the original problem to one involving integral equations. Here, negative and fractional powers of those unbounded differential operators which constitute 'principal parts' of the original problem, are used in an essential way. Next there is chosen or constructed a function space in which the corresponding integral oper ator possesses sufficiently good properties. Once such a space is found, the original problem can often be analyzed by applying general theorems (Fredholm theorems in the study of linear equations, fixed point principles in the study of non-linear equations, methods of the theory of cones in the study of positive solutions, etc.). In other words, the investigation of many problems is effectively divided into three independent parts: transformation to an integral equation, investi gation of the corresponding integral expression as an operator acting in function spaces, and, finally, application of general methods of functional analysis to the investigation of the linear and non-linear equations.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,85 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 5830056
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The investigation of many mathematical problems is significantly simplified if it is possible to reduce them to equations involving continuous or com pletely continuous operators in function spaces. In particular, this is true for non-linear boundary value problems and for integro-differential and integral equations. To effect a transformation to equations with continuous or completely continuous operators, it is usually necessary to reduce the original problem to one involving integral equations. Here, negative and fractional powers of those unbounded differential operators which constitute 'principal parts' of the original problem, are used in an essential way. Next there is chosen or constructed a function space in which the corresponding integral oper ator possesses sufficiently good properties. Once such a space is found, the original problem can often be analyzed by applying general theorems (Fredholm theorems in the study of linear equations, fixed point principles in the study of non-linear equations, methods of the theory of cones in the study of positive solutions, etc.). In other words, the investigation of many problems is effectively divided into three independent parts: transformation to an integral equation, investi gation of the corresponding integral expression as an operator acting in function spaces, and, finally, application of general methods of functional analysis to the investigation of the linear and non-linear equations.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 540 pp. Englisch. Bestandsnummer des Verkäufers 9789401015448
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The investigation of many mathematical problems is significantly simplified if it is possible to reduce them to equations involving continuous or com pletely continuous operators in function spaces. In particular, this is true for non-linear boundary value problems and for integro-differential and integral equations. To effect a transformation to equations with continuous or completely continuous operators, it is usually necessary to reduce the original problem to one involving integral equations. Here, negative and fractional powers of those unbounded differential operators which constitute 'principal parts' of the original problem, are used in an essential way. Next there is chosen or constructed a function space in which the corresponding integral oper ator possesses sufficiently good properties. Once such a space is found, the original problem can often be analyzed by applying general theorems (Fredholm theorems in the study of linear equations, fixed point principles in the study of non-linear equations, methods of the theory of cones in the study of positive solutions, etc.). In other words, the investigation of many problems is effectively divided into three independent parts: transformation to an integral equation, investi gation of the corresponding integral expression as an operator acting in function spaces, and, finally, application of general methods of functional analysis to the investigation of the linear and non-linear equations. Bestandsnummer des Verkäufers 9789401015448
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9789401015448_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Integral Operators in Spaces of Summable Functions 1.57. Book. Bestandsnummer des Verkäufers BBS-9789401015448
Anzahl: 5 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The investigation of many mathematical problems is significantly simplified if it is possible to reduce them to equations involving continuous or com pletely continuous operators in function spaces. In particular, this is true for non-linear boundary value problems and for integro-differential and integral equations. To effect a transformation to equations with continuous or completely continuous operators, it is usually necessary to reduce the original problem to one involving integral equations. Here, negative and fractional powers of those unbounded differential operators which constitute 'principal parts' of the original problem, are used in an essential way. Next there is chosen or constructed a function space in which the corresponding integral oper ator possesses sufficiently good properties. Once such a space is found, the original problem can often be analyzed by applying general theorems (Fredholm theorems in the study of linear equations, fixed point principles in the study of non-linear equations, methods of the theory of cones in the study of positive solutions, etc.). In other words, the investigation of many problems is effectively divided into three independent parts: transformation to an integral equation, investi gation of the corresponding integral expression as an operator acting in function spaces, and, finally, application of general methods of functional analysis to the investigation of the linear and non-linear equations. 540 pp. Englisch. Bestandsnummer des Verkäufers 9789401015448
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 540 pages. 8.82x5.91x1.26 inches. In Stock. Bestandsnummer des Verkäufers x-9401015449
Anzahl: 2 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Apr0412070053598
Anzahl: Mehr als 20 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA77394010154496
Anzahl: 1 verfügbar