Light scattering and absorption by small homogeneous particles can be worked-out exactly for spheres and infinite cylinders. Homogeneous particles of irregular shapes, when averaged with respect to rotation, have effects that can in general be well-approximated by reference to results for these two idealised cases. Likewise, small inhomogeneous particles have effects similar to homogeneous particles of the same average refractive index. Thus most problems can be solved to a satisfactory approximation by reference to the exact solutions for spheres and cylinders, which are fully stated here in the early part of the book. The sum of scattering and absorption, the extinction, is too large to be explained by inorganic materials, provided element abundances in the interstellar medium are not appreciably greater than solar, H 0 and NH3 being essentially excluded in the 2 general medium, otherwise very strong absorptions near 3p,m would be observed which they are not. A well-marked extinction maximum in the ultraviolet near 2200A has also not been explained satisfactorily by inorganic materials. Accurately formed graphite spheres with radii close to O.02p,m could conceivably provide an explanation of this ultraviolet feature but no convincing laboratory preparation of such spheres has ever been achieved.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The problem of the composition of cosmic dust grains has stubbornly defied solution for over half a century. A succession of models have been proposed and their properties worked out for comparison with an ever-expanding body of relevant observational data. The authors began their pioneering work in this field in the 1960s by challenging the then popular ice grain theory. Most controversially they later hypothesised that condensed organic matter in the galaxy is of biological origin, thus linking an old astronomical problem with the question of the origin of terrestrial life. In this book the authors develop the theory of Cosmic Grains on a broad front starting logically from basic mathematical and astronomical premises. The reader is guided through a historical progression of ideas on the nature of grains, leading ultimately to the authors' own point of view, which shows through a clear predictive sequence the important role of complex organic material in the interstellar grains.
Light scattering and absorption by small homogeneous particles can be worked-out exactly for spheres and infinite cylinders. Homogeneous particles of irregular shapes, when averaged with respect to rotation, have effects that can in general be well-approximated by reference to results for these two idealised cases. Likewise, small inhomogeneous particles have effects similar to homogeneous particles of the same average refractive index. Thus most problems can be solved to a satisfactory approximation by reference to the exact solutions for spheres and cylinders, which are fully stated here in the early part of the book. The sum of scattering and absorption, the extinction, is too large to be explained by inorganic materials, provided element abundances in the interstellar medium are not appreciably greater than solar, H 0 and NH3 being essentially excluded in the 2 general medium, otherwise very strong absorptions near 3p,m would be observed which they are not. A well-marked extinction maximum in the ultraviolet near 2200A has also not been explained satisfactorily by inorganic materials. Accurately formed graphite spheres with radii close to O.02p,m could conceivably provide an explanation of this ultraviolet feature but no convincing laboratory preparation of such spheres has ever been achieved.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,68 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Light scattering and absorption by small homogeneous particles can be worked-out exactly for spheres and infinite cylinders. Homogeneous particles of irregular shapes, when averaged with respect to rotation, have effects that can in general be well-approxim. Bestandsnummer des Verkäufers 5832195
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Light scattering and absorption by small homogeneous particles can be worked-out exactly for spheres and infinite cylinders. Homogeneous particles of irregular shapes, when averaged with respect to rotation, have effects that can in general be well-approximated by reference to results for these two idealised cases. Likewise, small inhomogeneous particles have effects similar to homogeneous particles of the same average refractive index. Thus most problems can be solved to a satisfactory approximation by reference to the exact solutions for spheres and cylinders, which are fully stated here in the early part of the book. The sum of scattering and absorption, the extinction, is too large to be explained by inorganic materials, provided element abundances in the interstellar medium are not appreciably greater than solar, H 0 and NH3 being essentially excluded in the 2 general medium, otherwise very strong absorptions near 3p,m would be observed which they are not. A well-marked extinction maximum in the ultraviolet near 2200A has also not been explained satisfactorily by inorganic materials. Accurately formed graphite spheres with radii close to O.02p,m could conceivably provide an explanation of this ultraviolet feature but no convincing laboratory preparation of such spheres has ever been achieved.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 320 pp. Englisch. Bestandsnummer des Verkäufers 9789401055055
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Light scattering and absorption by small homogeneous particles can be worked-out exactly for spheres and infinite cylinders. Homogeneous particles of irregular shapes, when averaged with respect to rotation, have effects that can in general be well-approximated by reference to results for these two idealised cases. Likewise, small inhomogeneous particles have effects similar to homogeneous particles of the same average refractive index. Thus most problems can be solved to a satisfactory approximation by reference to the exact solutions for spheres and cylinders, which are fully stated here in the early part of the book. The sum of scattering and absorption, the extinction, is too large to be explained by inorganic materials, provided element abundances in the interstellar medium are not appreciably greater than solar, H 0 and NH3 being essentially excluded in the 2 general medium, otherwise very strong absorptions near 3p,m would be observed which they are not. A well-marked extinction maximum in the ultraviolet near 2200A has also not been explained satisfactorily by inorganic materials. Accurately formed graphite spheres with radii close to O.02p,m could conceivably provide an explanation of this ultraviolet feature but no convincing laboratory preparation of such spheres has ever been achieved. Bestandsnummer des Verkäufers 9789401055055
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9789401055055_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9789401055055
Anzahl: 2 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9789401055055
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Light scattering and absorption by small homogeneous particles can be worked-out exactly for spheres and infinite cylinders. Homogeneous particles of irregular shapes, when averaged with respect to rotation, have effects that can in general be well-approximated by reference to results for these two idealised cases. Likewise, small inhomogeneous particles have effects similar to homogeneous particles of the same average refractive index. Thus most problems can be solved to a satisfactory approximation by reference to the exact solutions for spheres and cylinders, which are fully stated here in the early part of the book. The sum of scattering and absorption, the extinction, is too large to be explained by inorganic materials, provided element abundances in the interstellar medium are not appreciably greater than solar, H 0 and NH3 being essentially excluded in the 2 general medium, otherwise very strong absorptions near 3p,m would be observed which they are not. A well-marked extinction maximum in the ultraviolet near 2200A has also not been explained satisfactorily by inorganic materials. Accurately formed graphite spheres with radii close to O.02p,m could conceivably provide an explanation of this ultraviolet feature but no convincing laboratory preparation of such spheres has ever been achieved. 320 pp. Englisch. Bestandsnummer des Verkäufers 9789401055055
Anzahl: 2 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 322. Bestandsnummer des Verkäufers 2648024030
Anzahl: 4 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Apr0412070055434
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 322. Bestandsnummer des Verkäufers 1848024020
Anzahl: 4 verfügbar