THIS IS THE FIRST BOOK TO COMPARE EIGHT LDFS BY DIFFERENT TYPES OF DATASETS, SUCH AS FISHER’S IRIS DATA, MEDICAL DATA WITH COLLINEARITIES, SWISS BANKNOTE DATA THAT IS A LINEARLY SEPARABLE DATA (LSD), STUDENT PASS/FAIL DETERMINATION USING STUDENT ATTRIBUTES, 18 PASS/FAIL DETERMINATIONS USING EXAM SCORES, JAPANESE AUTOMOBILE DATA, AND SIX MICROARRAY DATASETS (THE DATASETS) THAT ARE LSD. WE DEVELOPED THE 100-FOLD CROSS-VALIDATION FOR THE SMALL SAMPLE METHOD (METHOD 1) INSTEAD OF THE LOO METHOD. WE PROPOSED A SIMPLE MODEL SELECTION PROCEDURE TO CHOOSE THE BEST MODEL HAVING MINIMUM M2 AND REVISED IP-OLDF BASED ON MNM CRITERION WAS FOUND TO BE BETTER THAN OTHER M2S IN THE ABOVE DATASETS.<DIV><BR>WE COMPARED TWO STATISTICAL LDFS AND SIX MP-BASED LDFS. THOSE WERE FISHER’S LDF, LOGISTIC REGRESSION, THREE SVMS, REVISED IP-OLDF, AND ANOTHER TWO OLDFS. ONLY A HARD-MARGIN SVM (H-SVM) AND REVISED IP-OLDF COULD DISCRIMINATE LSD THEORETICALLY (PROBLEM 2). WE SOLVED THE DEFECT OF THE GENERALIZED INVERSE MATRICES (PROBLEM 3).</DIV><DIV><BR>FOR MORE THAN 10 YEARS, MANY RESEARCHERS HAVE STRUGGLED TO ANALYZE THE MICROARRAY DATASET THAT IS LSD (PROBLEM 5). IF WE CALL THE LINEARLY SEPARABLE MODEL "MATROSKA," THE DATASET CONSISTS OF NUMEROUS SMALLER MATROSKAS IN IT. WE DEVELOP THE MATROSKA FEATURE SELECTION METHOD (METHOD 2). IT FINDS THE SURPRISING STRUCTURE OF THE DATASET THAT IS THE DISJOINT UNION OF SEVERAL SMALL MATROSKAS. OUR THEORY AND METHODS REVEAL NEW FACTS OF GENE ANALYSIS.<BR><BR></DIV>
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This is the first book to compare eight LDFs by different types of datasets, such as Fisher’s iris data, medical data with collinearities, Swiss banknote data that is a linearly separable data (LSD), student pass/fail determination using student attributes, 18 pass/fail determinations using exam scores, Japanese automobile data, and six microarray datasets (the datasets) that are LSD. We developed the 100-fold cross-validation for the small sample method (Method 1) instead of the LOO method. We proposed a simple model selection procedure to choose the best model having minimum M2 and Revised IP-OLDF based on MNM criterion was found to be better than other M2s in the above datasets.
We compared two statistical LDFs and six MP-based LDFs. Those were Fisher’s LDF, logistic regression, three SVMs, Revised IP-OLDF, and another two OLDFs. Only a hard-margin SVM (H-SVM) and Revised IP-OLDF could discriminate LSD theoretically (Problem 2). We solved the defect of the generalized inverse matrices (Problem 3).
For more than 10 years, many researchers have struggled to analyze the microarray dataset that is LSD (Problem 5). If we call the linearly separable model "Matroska," the dataset consists of numerous smaller Matroskas in it. We develop the Matroska feature selection method (Method 2). It finds the surprising structure of the dataset that is the disjoint union of several small Matroskas. Our theory and methods reveal new facts of gene analysis.
Shuichi Shinmura, Seikei University
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Versand:
EUR 45,00
Von Deutschland nach USA
Versand:
EUR 23,00
Von Deutschland nach USA
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This is the first book to compare eight LDFs by different types of datasets, such as Fisher's iris data, medical data with collinearities, Swiss banknote data that is a linearly separable data (LSD), student pass/fail determination using student attributes, 18 pass/fail determinations using exam scores, Japanese automobile data, and six microarray datasets (the datasets) that are LSD. We developed the 100-fold cross-validation for the small sample method (Method 1) instead of the LOO method. We proposed a simple model selection procedure to choose the best model having minimum M2 and Revised IP-OLDF based on MNM criterion was found to be better than other M2s in the above datasets.We compared two statistical LDFs and six MP-based LDFs. Those were Fisher's LDF, logistic regression, three SVMs, Revised IP-OLDF, and another two OLDFs. Only a hard-margin SVM (H-SVM) and Revised IP-OLDF could discriminate LSD theoretically (Problem 2). We solved the defect of the generalized inverse matrices (Problem 3).For more than 10 years, many researchers have struggled to analyze the microarray dataset that is LSD (Problem 5). If we call the linearly separable model 'Matroska,' the dataset consists of numerous smaller Matroskas in it. We develop the Matroska feature selection method (Method 2). It finds the surprising structure of the dataset that is the disjoint union of several small Matroskas. Our theory and methods reveal new facts of gene analysis. 228 pp. Englisch. Bestandsnummer des Verkäufers 9789811021633
Anzahl: 2 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Apr0412070080328
Anzahl: Mehr als 20 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut - Gepflegter, sauberer Zustand. | Seiten: 228 | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 26892414/12
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This is the first book to compare eight LDFs by different types of datasets, such as Fisher's iris data, medical data with collinearities, Swiss banknote data that is a linearly separable data (LSD), student pass/fail determination using student attributes, 18 pass/fail determinations using exam scores, Japanese automobile data, and six microarray datasets (the datasets) that are LSD. We developed the 100-fold cross-validation for the small sample method (Method 1) instead of the LOO method. We proposed a simple model selection procedure to choose the best model having minimum M2 and Revised IP-OLDF based on MNM criterion was found to be better than other M2s in the above datasets.We compared two statistical LDFs and six MP-based LDFs. Those were Fisher's LDF, logistic regression, three SVMs, Revised IP-OLDF, and another two OLDFs. Only a hard-margin SVM (H-SVM) and Revised IP-OLDF could discriminate LSD theoretically (Problem 2). We solved the defect of the generalized inverse matrices (Problem 3).For more than 10 years, many researchers have struggled to analyze the microarray dataset that is LSD (Problem 5). If we call the linearly separable model 'Matroska,' the dataset consists of numerous smaller Matroskas in it. We develop the Matroska feature selection method (Method 2). It finds the surprising structure of the dataset that is the disjoint union of several small Matroskas. Our theory and methods reveal new facts of gene analysis. Bestandsnummer des Verkäufers 9789811021633
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9789811021633_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Compares eight LDFs by seven different kinds of data sets from the points of view of M2 and 95% CI of the coefficientPresents solutions for five serious problems of discriminant analysis and finds important facts of discrimina. Bestandsnummer des Verkäufers 123001337
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26378110665
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 385760534
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18378110659
Anzahl: 4 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 228 pages. 9.25x6.10x0.80 inches. In Stock. Bestandsnummer des Verkäufers x-9811021635
Anzahl: 2 verfügbar