Verwandte Artikel zu Deep Learning: Convergence to Big Data Analytics (SpringerBr...

Deep Learning: Convergence to Big Data Analytics (SpringerBriefs in Computer Science) - Softcover

 
9789811334580: Deep Learning: Convergence to Big Data Analytics (SpringerBriefs in Computer Science)

Inhaltsangabe

This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data. Further, it offers an introductory level understanding of the new programming languages and tools used to analyze big data in real-time, such as Hadoop, SPARK, and GRAPHX. Big data analytics using traditional techniques face various challenges, such as fast, accurate and efficient processing of big data in real-time. In addition, the Internet of Things is progressively increasing in various fields, like smart cities, smart homes, and e-health. As the enormous number of connected devices generate huge amounts of data every day, we need sophisticated algorithms to deal, organize, and classify this data in less processing time and space. Similarly, existing techniques and algorithms for deep learning in big data field have several advantages thanks to the two main branches of the deep learning, i.e. convolution and deep belief networks. This book offers insights into these techniques and applications based on these two types of deep learning.

Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses various machine learning techniques in concatenation with the deep learning paradigm to support high-end data processing, data classifications, and real-time data processing issues.

The classification and presentation are kept quite simple to help the readers and students grasp the basics concepts of various deep learning paradigms and frameworks. It mainly focuses on theory rather than the mathematical background of the deep learning concepts. The book consists of 5 chapters, beginning with an introductory explanation of big data and deep learning techniques, followed by integration of big data and deep learning techniques and lastly the future directions.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Murad Khan received a B.S. degree in Computer Science from the University of Peshawar Pakistan in 2008. He completed his Ph.D. in Computer Science and Engineering at the School of Computer Science and Engineering at Kyungpook National University, Daegu, Korea. Dr. Khan has published over 50 international conference and journal papers along with two books chapters with Springer and CRC Press. He also served as a TPC member in reputable international conferences, such as ACM SAC 2017, ICFNDS 2017, and as a reviewer for numerous journals such as Future Generation Systems (Elsevier) and IEEE Access. In 2016, he received the Kyungpook National University’s Qualcomm Innovation Award for designing a smart home control system. He was also awarded the Bronze Medal at ACM SAC 2015, Salamanca, Spain, for his work on multi-criteria based handover techniques. He is a member of various communities, including ACM and IEEE, and CRC Press. His areas of expertise include ad-hoc and wireless networks, architecture design for Internet of Things, and communication protocol design for smart cities and homes, big data analytics, etc.

Bilal Jan received his M.S. and Ph.D. degrees from the Department of Control and Computer Engineering (DAUIN) Politecnico di Torino, Italy, in 2010 and 2015 respectively. He has published several papers in reputed journals and conferences. He is currently working as Assistant Professor and Head of the Department of Computer Science, FATA University, Darra Adam Khel, FR Kohat, Pakistan. He is a reviewer for numerous leading journals. His research interests include general purpose programming in GPUs, high-performance computing, wireless sensor networks, Internet of things (IoT), deep learning and big data.

Haleem Farman received his M.S. degree from the International Islamic University, Islamabad, Pakistan in 2008. He is currently pursuing his Ph.D. degree in Computer Science at the Department of Computer Science, University of Peshawar,Pakistan, and working as a lecturer at the Department of Computer Science, Islamia College Peshawar, Pakistan. He has authored/co-authored more than 20 research papers in respected journals and conferences. In addition, he serves as an invited reviewer for several journals, such as Elsevier Sustainable Cities and Society. His fields of interest include wireless sensor networks, Internet of Things, big data analytics, privacy, optimization techniques and quality of service issues in wireless networks.


Von der hinteren Coverseite

This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data. Further, it offers an introductory level understanding of the new programming languages and tools used to analyze big data in real-time, such as Hadoop, SPARK, and GRAPHX. Big data analytics using traditional techniques face various challenges, such as fast, accurate and efficient processing of big data in real-time. In addition, the Internet of Things is progressively increasing in various fields, like smart cities, smart homes, and e-health. As the enormous number of connected devices generate huge amounts of data every day, we need sophisticated algorithms to deal, organize, and classify this data in less processing time and space. Similarly, existing techniques and algorithms for deep learning in big data field have several advantages thanks to the two main branches of the deep learning, i.e. convolution and deep belief networks. This book offers insights into these techniquesand applications based on these two types of deep learning.

Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses various machine learning techniques in concatenation with the deep learning paradigm to support high-end data processing, data classifications, and real-time data processing issues.

The classification and presentation are kept quite simple to help the readers and students grasp the basics concepts of various deep learning paradigms and frameworks. It mainly focuses on theory rather than the mathematical background of the deep learning concepts. The book consists of 5 chapters, beginning with an introductory explanation of big data and deep learning techniques, followed by integration of big data and deep learning techniques and lastly the future directions.


„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2019
  • ISBN 10 9811334587
  • ISBN 13 9789811334580
  • EinbandTapa blanda
  • SpracheEnglisch
  • Auflage1
  • Anzahl der Seiten96
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Befriedigend
May show signs of wear, highlighting...
Diesen Artikel anzeigen

EUR 17,49 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9789811334603: Deep Learning: Convergence to Big Data Analytics

Vorgestellte Ausgabe

ISBN 10:  9811334609 ISBN 13:  9789811334603
Verlag: Springer, 2019
Softcover

Suchergebnisse für Deep Learning: Convergence to Big Data Analytics (SpringerBr...

Foto des Verkäufers

Murad Khan|Bilal Jan|Haleem Farman
Verlag: Springer Singapore, 2019
ISBN 10: 9811334587 ISBN 13: 9789811334580
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Offers an introduction to big data and deep learningPresents a unification of big data and deep learning techniquesProvides an introductory level understanding of the new programming languages and tools used to analyze big data in real. Bestandsnummer des Verkäufers 251676986

Verkäufer kontaktieren

Neu kaufen

EUR 65,94
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Murad Khan
ISBN 10: 9811334587 ISBN 13: 9789811334580
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data. Further, it offers an introductory level understanding of the new programming languages and tools used to analyze big data in real-time, such as Hadoop, SPARK, and GRAPHX. Big data analytics using traditional techniques face various challenges, such as fast, accurate and efficient processing of big data in real-time. In addition, the Internet of Things is progressively increasing in various fields, like smart cities, smart homes, and e-health. As the enormous number of connected devices generate huge amounts of data every day, we need sophisticated algorithms to deal, organize, and classify this data in less processing time and space. Similarly, existing techniques and algorithms for deep learning in big data field have several advantages thanks to the two main branches of the deep learning, i.e. convolution and deep belief networks. This book offers insights into these techniques and applications based on these two types of deep learning.Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses various machine learning techniques in concatenation with the deep learning paradigm to support high-end data processing, data classifications, and real-time data processing issues.The classification and presentation are kept quite simple to help the readers and students grasp the basics concepts of various deep learning paradigms and frameworks. It mainly focuses on theory rather than the mathematical background of the deep learning concepts. The book consists of 5 chapters, beginning with an introductory explanation of big data and deep learning techniques, followed by integration of big data and deep learning techniques and lastly the future directions.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 96 pp. Englisch. Bestandsnummer des Verkäufers 9789811334580

Verkäufer kontaktieren

Neu kaufen

EUR 74,89
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Murad Khan
ISBN 10: 9811334587 ISBN 13: 9789811334580
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data. Further, it offers an introductory level understanding of the new programming languages and tools used to analyze big data in real-time, such as Hadoop, SPARK, and GRAPHX. Big data analytics using traditional techniques face various challenges, such as fast, accurate and efficient processing of big data in real-time. In addition, the Internet of Things is progressively increasing in various fields, like smart cities, smart homes, and e-health. As the enormous number of connected devices generate huge amounts of data every day, we need sophisticated algorithms to deal, organize, and classify this data in less processing time and space. Similarly, existing techniques and algorithms for deep learning in big data field have several advantages thanks to the two main branches of the deep learning, i.e. convolution and deep belief networks. This book offers insights into these techniques and applications based on these two types of deep learning.Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses various machine learning techniques in concatenation with the deep learning paradigm to support high-end data processing, data classifications, and real-time data processing issues. The classification and presentation are kept quite simple to help the readers and students grasp the basics concepts of various deep learning paradigms and frameworks. It mainly focuses on theory rather than the mathematical background of the deep learning concepts. The book consists of 5 chapters, beginning with an introductory explanation of big data and deep learning techniques, followed by integration of big data and deep learning techniques and lastly the future directions. 96 pp. Englisch. Bestandsnummer des Verkäufers 9789811334580

Verkäufer kontaktieren

Neu kaufen

EUR 74,89
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Khan, Murad; Jan, Bilal; Farman, Haleem
Verlag: Springer, 2019
ISBN 10: 9811334587 ISBN 13: 9789811334580
Gebraucht Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. Bestandsnummer des Verkäufers 34066680-5

Verkäufer kontaktieren

Gebraucht kaufen

EUR 62,50
Währung umrechnen
Versand: EUR 17,49
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Murad Khan
ISBN 10: 9811334587 ISBN 13: 9789811334580
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data. Further, it offers an introductory level understanding of the new programming languages and tools used to analyze big data in real-time, such as Hadoop, SPARK, and GRAPHX. Big data analytics using traditional techniques face various challenges, such as fast, accurate and efficient processing of big data in real-time. In addition, the Internet of Things is progressively increasing in various fields, like smart cities, smart homes, and e-health. As the enormous number of connected devices generate huge amounts of data every day, we need sophisticated algorithms to deal, organize, and classify this data in less processing time and space. Similarly, existing techniques and algorithms for deep learning in big data field have several advantages thanks to the two main branches of the deep learning, i.e. convolution and deep belief networks. This book offers insights into these techniques and applications based on these two types of deep learning.Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses various machine learning techniques in concatenation with the deep learning paradigm to support high-end data processing, data classifications, and real-time data processing issues. The classification and presentation are kept quite simple to help the readers and students grasp the basics concepts of various deep learning paradigms and frameworks. It mainly focuses on theory rather than the mathematical background of the deep learning concepts. The book consists of 5 chapters, beginning with an introductory explanation of big data and deep learning techniques, followed by integration of big data and deep learning techniques and lastly the future directions. Bestandsnummer des Verkäufers 9789811334580

Verkäufer kontaktieren

Neu kaufen

EUR 80,15
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Khan, Murad
Verlag: Springer, 2019
ISBN 10: 9811334587 ISBN 13: 9789811334580
Gebraucht paperback

Anbieter: Textbooks_Source, Columbia, MO, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

paperback. Zustand: Good. 1st ed. 2019. Ships in a BOX from Central Missouri! May not include working access code. Will not include dust jacket. Has used sticker(s) and some writing or highlighting. UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). Bestandsnummer des Verkäufers 011091951U

Verkäufer kontaktieren

Gebraucht kaufen

EUR 61,29
Währung umrechnen
Versand: EUR 65,64
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Khan, Murad; Jan, Bilal; Farman, Haleem
Verlag: Springer, 2019
ISBN 10: 9811334587 ISBN 13: 9789811334580
Gebraucht Softcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. Bestandsnummer des Verkäufers 34066680-5

Verkäufer kontaktieren

Gebraucht kaufen

EUR 130,89
Währung umrechnen
Versand: EUR 17,79
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb