Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Zhiyong Du received his B.S. degree in Electronic Information Engineering from Wuhan University of Technology, Wuhan, China, in 2009, and his Ph.D. degree in Communications and Information Systems from the College of Communications Engineering, PLA University of Science and Technology, Nanjing, China, in 2015. He is currently a lecturer at the National University of Defense Technology. His research interests include 5G, quality of experience (QoE), learning theory, and game theory.
Bin Jiang received his B.S. degree in Communication Engineering and Ph.D. degree in Information and Communication Engineering both from the National University of Defense Technology, Changsha, China, in 1996 and 2006, respectively. He is currently a Professor at the National University of Defense Technology. His research interests include 5G, artificial intelligence, and wireless signal processing.
Qihui Wu received his B.S., M.S., and Ph.D. degrees in Communications and Information Systems from the PLA University of Science and Technology, Nanjing, China, in 1994, 1997, and 2000, respectively. He is Professor at the College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics. His current research interests include algorithms and optimization for cognitive wireless networks, software-defined radio, and wireless communication systems.
Yuhua Xu received his B.S. degree in Communication Engineering and Ph.D. degree in Communications and Information Systems from the College of Communications Engineering, PLA University of Science and Technology, in 2006 and 2014, respectively. He is currently an Associate Professor at the College of Communications Engineering, Army Engineering University of PLA. He has published several papers in international conferences and respected journals. His research interests include UAV communication networks, opportunistic spectrum access, learning theory, and distributed optimization techniques for wireless communications. He received a Certificate of Appreciation as an Exemplary Reviewer of the IEEE Communications Letters, in 2011 and 2012. He received the IEEE Signal Processing Society 2015 Young Author Best Paper Award and the Funds for Distinguished Young Scholars of Jiangsu Province in 2016.
Kun Xu received his B.S. degree in Communication Engineering and Ph. D. degree in Communications and Information Systems, both from PLA University of Science and Technology, in 2007 and 2013, respectively. He is currently a lecturer at the College of Information and Communication, National University of Defense Technology (NUDT). His research interests include HF communication, unmanned aerial vehicle communication, and relay communication.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 7,66 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9789811511226
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Apr0412070087918
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9789811511226_new
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9789811511226
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents reinforcement learning (RL) based solutions for user-centric online network selection optimization. The main content can be divided into three parts. The first part (chapter 2 and 3) focuses on how to learning the best network when QoE is revealed beyond QoS under the framework of multi-armed bandit (MAB). The second part (chapter 4 and 5) focuses on how to meet dynamic user demand in complex and uncertain heterogeneous wireless networks under the framework of markov decision process (MDP). The third part (chapter 6 and 7) focuses on how to meet heterogeneous user demand for multiple users inlarge-scale networks under the framework of game theory. Efficient RL algorithms with practical constraints and considerations are proposed to optimize QoE for realizing intelligent online network selection for future mobile networks. This book is intended as a reference resource for researchers and designers in resource management of 5G networks and beyond. 148 pp. Englisch. Bestandsnummer des Verkäufers 9789811511226
Anzahl: 2 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. 1st ed. 2020 edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26387741687
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 392939560
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Offers new insights into how to model and exploit user demand in resource managementProvides various application examples of reinforcement learning algorithms on resource management of wireless networksPresents novel game models and associa. Bestandsnummer des Verkäufers 449939718
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18387741693
Anzahl: 4 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book presents reinforcement learning (RL) based solutions for user-centric online network selection optimization. The main content can be divided into three parts. The first part (chapter 2 and 3) focuses on how to learning the best network when QoE is revealed beyond QoS under the framework of multi-armed bandit (MAB). The second part (chapter 4 and 5) focuses on how to meet dynamic user demand in complex and uncertain heterogeneous wireless networks under the framework of markov decision process (MDP). The third part (chapter 6 and 7) focuses on how to meet heterogeneous user demand for multiple users inlarge-scale networks under the framework of game theory. Efficient RL algorithms with practical constraints and considerations are proposed to optimize QoE for realizing intelligent online network selection for future mobile networks. This book is intended as a reference resource for researchers and designers in resource management of 5G networks and beyond.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 148 pp. Englisch. Bestandsnummer des Verkäufers 9789811511226
Anzahl: 2 verfügbar