Verwandte Artikel zu Knowledge Discovery from Multi-Sourced Data (SpringerBriefs...

Knowledge Discovery from Multi-Sourced Data (SpringerBriefs in Computer Science) - Softcover

 
9789811918780: Knowledge Discovery from Multi-Sourced Data (SpringerBriefs in Computer Science)

Inhaltsangabe

This book addresses several knowledge discovery problems on multi-sourced data where the theories, techniques, and methods in data cleaning, data mining, and natural language processing are synthetically used. This book mainly focuses on three data models: the multi-sourced isomorphic data, the multi-sourced heterogeneous data, and the text data. On the basis of three data models, this book studies the knowledge discovery problems including truth discovery and fact discovery on multi-sourced data from four important properties: relevance, inconsistency, sparseness, and heterogeneity, which is useful for specialists as well as graduate students.
 
Data, even describing the same object or event, can come from a variety of sources such as crowd workers and social media users. However, noisy pieces of data or information are unavoidable. Facing the daunting scale of data, it is unrealistic to expect humans to "label" or tell which data source is more reliable. Hence, it is crucial to identify trustworthy information from multiple noisy information sources, referring to the task of knowledge discovery.
 
At present, the knowledge discovery research for multi-sourced data mainly faces two challenges. On the structural level, it is essential to consider the different characteristics of data composition and application scenarios and define the knowledge discovery problem on different occasions. On the algorithm level, the knowledge discovery task needs to consider different levels of information conflicts and design efficient algorithms to mine more valuable information using multiple clues. Existing knowledge discovery methods have defects on both the structural level and the algorithm level, making the knowledge discovery problem far from totally solved.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Chen Ye is currently an Associate Researcher at the School of Computer Science and Technology, Hangzhou Dianzi University, China. She received the Ph.D. degree in Computer Software and Theory from Harbin Institute of Technology, China. Her current research interests include data repairing, truth discovery, and crowdsourcing. She has won the ACM SIGMOD China Doctoral Dissertation Award in 2020.

Hongzhi Wang is a Professor and Doctoral Supervisor at the School of Computer Science and Technology, Harbin Institute of Technology, China. His research interests include big data management and analysis, data quality, graph data management, and web data management. He has published more than 150 papers, and he is the Primary Investigator of more than 10 projects including three NSFC projects, and co-PI of 973, 863, and NSFC key projects. He was awarded as Microsoft fellowship, China Excellent Database Engineer, and IBM Ph.D. fellowship.

Guojun Dai is now working in the School of Computer Science and Technology of Hangzhou Dianzi University, as the Head of the National Brain-Computer Collaborative Intelligent Technology International Joint Research Center, the director of the Institute of Computer Application Technology. His research interests include Internet of Things, industrial big data, network collaborative manufacturing, edge computing, brain-computer interface, cognitive computing, artificial intelligence. He has published over 50 research papers in top-quality international conferences and journals, particularly, INFOCOM, IEEE Transactions on Industrial Informatics, and IEEE Transactions on Mobile Computing.

Von der hinteren Coverseite


„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Hervorragend | Seiten:...
Diesen Artikel anzeigen

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Knowledge Discovery from Multi-Sourced Data (SpringerBriefs...

Beispielbild für diese ISBN

Chen Ye, Guojun Dai, Hongzhi Wang
ISBN 10: 9811918783 ISBN 13: 9789811918780
Gebraucht Softcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Hervorragend. Zustand: Hervorragend | Seiten: 96 | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 38952132/1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 39,79
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Ye, Chen|Wang, Hongzhi|Dai, Guojun
ISBN 10: 9811918783 ISBN 13: 9789811918780
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book addresses several knowledge discovery problems on multi-sourced data where the theories, techniques, and methods in data cleaning, data mining, and natural language processing are synthetically used. This book mainly focuses on three data models: . Bestandsnummer des Verkäufers 571810609

Verkäufer kontaktieren

Neu kaufen

EUR 48,37
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Chen Ye
ISBN 10: 9811918783 ISBN 13: 9789811918780
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This book addresses several knowledge discovery problems on multi-sourced data where the theories, techniques, and methods in data cleaning, data mining, and natural language processing are synthetically used. This book mainly focuses on three data models: the multi-sourced isomorphic data, the multi-sourced heterogeneous data, and the text data. On the basis of three data models, this book studies the knowledge discovery problems including truth discovery and fact discovery on multi-sourced data from four important properties: relevance, inconsistency, sparseness, and heterogeneity, which is useful for specialists as well as graduate students.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 96 pp. Englisch. Bestandsnummer des Verkäufers 9789811918780

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Chen Ye
ISBN 10: 9811918783 ISBN 13: 9789811918780
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book addresses several knowledge discovery problems on multi-sourced data where the theories, techniques, and methods in data cleaning, data mining, and natural language processing are synthetically used. This book mainly focuses on three data models: the multi-sourced isomorphic data, the multi-sourced heterogeneous data, and the text data. On the basis of three data models, this book studies the knowledge discovery problems including truth discovery and fact discovery on multi-sourced data from four important properties: relevance, inconsistency, sparseness, and heterogeneity, which is useful for specialists as well as graduate students.Data, even describing the same object or event, can come from a variety of sources such as crowd workers and social media users. However, noisy pieces of data or information are unavoidable. Facing the daunting scale of data, it is unrealistic to expect humans to 'label' or tell which data source is more reliable. Hence, it is crucial to identify trustworthy information from multiple noisy information sources, referring to the task of knowledge discovery.At present, the knowledge discovery research for multi-sourced data mainly faces two challenges. On the structural level, it is essential to consider the different characteristics of data composition and application scenarios and define the knowledge discovery problem on different occasions. On the algorithm level, the knowledge discovery task needs to consider different levels of information conflicts and design efficient algorithms to mine more valuable information using multiple clues. Existing knowledge discovery methods have defects on both the structural level and the algorithm level, making the knowledge discovery problem far from totally solved. 96 pp. Englisch. Bestandsnummer des Verkäufers 9789811918780

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Chen Ye
ISBN 10: 9811918783 ISBN 13: 9789811918780
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book addresses several knowledge discovery problems on multi-sourced data where the theories, techniques, and methods in data cleaning, data mining, and natural language processing are synthetically used. This book mainly focuses on three data models: the multi-sourced isomorphic data, the multi-sourced heterogeneous data, and the text data. On the basis of three data models, this book studies the knowledge discovery problems including truth discovery and fact discovery on multi-sourced data from four important properties: relevance, inconsistency, sparseness, and heterogeneity, which is useful for specialists as well as graduate students.Data, even describing the same object or event, can come from a variety of sources such as crowd workers and social media users. However, noisy pieces of data or information are unavoidable. Facing the daunting scale of data, it is unrealistic to expect humans to 'label' or tell which data source is more reliable.Hence, it is crucial to identify trustworthy information from multiple noisy information sources, referring to the task of knowledge discovery.At present, the knowledge discovery research for multi-sourced data mainly faces two challenges. On the structural level, it is essential to consider the different characteristics of data composition and application scenarios and define the knowledge discovery problem on different occasions. On the algorithm level, the knowledge discovery task needs to consider different levels of information conflicts and design efficient algorithms to mine more valuable information using multiple clues. Existing knowledge discovery methods have defects on both the structural level and the algorithm level, making the knowledge discovery problem far from totally solved. Bestandsnummer des Verkäufers 9789811918780

Verkäufer kontaktieren

Neu kaufen

EUR 56,98
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Chen Ye
ISBN 10: 9811918783 ISBN 13: 9789811918780
Neu PAP

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers S0-9789811918780

Verkäufer kontaktieren

Neu kaufen

EUR 56,52
Währung umrechnen
Versand: EUR 4,48
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Ye, Chen (Author)/ Wang, Hongzhi (Author)/ Dai, Guojun (Author)
Verlag: Springer, 2022
ISBN 10: 9811918783 ISBN 13: 9789811918780
Neu Paperback
Print-on-Demand

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 95 pages. 9.25x6.10x0.28 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __9811918783

Verkäufer kontaktieren

Neu kaufen

EUR 53,48
Währung umrechnen
Versand: EUR 11,54
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Ye, Chen; Wang, Hongzhi; Dai, Guojun
Verlag: Springer, 2022
ISBN 10: 9811918783 ISBN 13: 9789811918780
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9789811918780_new

Verkäufer kontaktieren

Neu kaufen

EUR 60,41
Währung umrechnen
Versand: EUR 5,75
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Ye, Chen
Verlag: Springer 2022-06, 2022
ISBN 10: 9811918783 ISBN 13: 9789811918780
Neu PF

Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9789811918780

Verkäufer kontaktieren

Neu kaufen

EUR 56,20
Währung umrechnen
Versand: EUR 14,99
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 10 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Ye, Chen; Wang, Hongzhi; Dai, Guojun
Verlag: Springer, 2022
ISBN 10: 9811918783 ISBN 13: 9789811918780
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9789811918780

Verkäufer kontaktieren

Neu kaufen

EUR 65,44
Währung umrechnen
Versand: EUR 8,59
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 1 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen