Verwandte Artikel zu Principal Component Analysis and Randomness Test for...

Principal Component Analysis and Randomness Test for Big Data Analysis: Practical Applications of RMT-Based Technique: 25 (Evolutionary Economics and Social Complexity Science) - Hardcover

 
9789811939662: Principal Component Analysis and Randomness Test for Big Data Analysis: Practical Applications of RMT-Based Technique: 25 (Evolutionary Economics and Social Complexity Science)

Inhaltsangabe

This book presents the novel approach of analyzing large-sized rectangular-shaped numerical data (so-called big data). The essence of this approach is to grasp the "meaning" of the data instantly, without getting into the details of individual data. Unlike conventional approaches of principal component analysis, randomness tests, and visualization methods, the authors' approach has the benefits of universality and simplicity of data analysis, regardless of data types, structures, or specific field of science.

First, mathematical preparation is described. The RMT-PCA and the RMT-test utilize the cross-correlation matrix of time series, XXT, where X represents a rectangular matrix of N rows and L columns and XT represents the transverse matrix of X. Because C is symmetric, namely, CT, it can be converted to a diagonal matrix of eigenvalues by a similarity transformation SCS-1 = SCST using an orthogonal matrix S. When N is significantly large, the histogram of the eigenvalue distribution can be compared to the theoretical formula derived in the context of the random matrix theory (RMT, in abbreviation).

Then the RMT-PCA applied to high-frequency stock prices in Japanese and American markets is dealt with. This approach proves its effectiveness in extracting "trendy" business sectors of the financial market over the prescribed time scale. In this case, X consists of N stock- prices of length L, and the correlation matrix C is an N by N square matrix, whose element at the i-th row and j-th column is the inner product of the price time series of the length L of the i-th stock and the j-th stock of the equal length L.

Next, the RMT-test is applied to measure randomness of various random number generators, including algorithmically generated random numbers and physically generated random numbers.

The book concludes by demonstrating two applications of the RMT-test: (1) a comparison of hash functions, and (2) stock prediction by means of randomness, including a new index of off-randomness related to market decline.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Mieko Tanaka-Yamawaki, former professor, Tottori University
Yumihiko Ikura, Meiji University

Von der hinteren Coverseite

This book presents the novel approach of analyzing large-sized rectangular-shaped numerical data (so-called big data). The essence of this approach is to grasp the "meaning" of the data instantly, without getting into the details of individual data. Unlike conventional approaches of principal component analysis, randomness tests, and visualization methods, the authors' approach has the benefits of universality and simplicity of data analysis, regardless of data types, structures, or specific field of science.

First, mathematical preparation is described. The RMT-PCA and the RMT-test utilize the cross-correlation matrix of time series, XXT, where X represents a rectangular matrix of N rows and L columns and XT represents the transverse matrix of X. Because C is symmetric, namely, CT, it can be converted to a diagonal matrix of eigenvalues by a similarity transformation SCS-1 = SCST using an orthogonal matrix S. When N is significantly large, the histogram of the eigenvalue distribution can be compared to the theoretical formula derived in the context of the random matrix theory (RMT, in abbreviation).

Then the RMT-PCA applied to high-frequency stock prices in Japanese and American markets is dealt with. This approach proves its effectiveness in extracting "trendy" business sectors of the financial market over the prescribed time scale. In this case, X consists of N stock- prices of length L, and the correlation matrix C is an N by N square matrix, whose element at the i-th row and j-th column is the inner product of the price time series of the length L of the i-th stock and the j-th stock of the equal length L.

Next, the RMT-test is applied to measure randomness of various random number generators, including algorithmically generated random numbers and physically generated random numbers.

The book concludes by demonstrating two applications of the RMT-test: (1) a comparison of hash functions, and (2) stock prediction by means of randomness, including a new index of off-randomness related to market decline.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Hervorragend | Seiten:...
Diesen Artikel anzeigen

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9789811939693: Principal Component Analysis and Randomness Test for Big Data Analysis: Practical Applications of RMT-Based Technique: 25 (Evolutionary Economics and Social Complexity Science)

Vorgestellte Ausgabe

ISBN 10:  9811939691 ISBN 13:  9789811939693
Verlag: Springer Verlag, Singapore, 2024
Softcover

Suchergebnisse für Principal Component Analysis and Randomness Test for...

Beispielbild für diese ISBN

Yumihiko Ikura, Mieko Tanaka-Yamawaki
ISBN 10: 9811939667 ISBN 13: 9789811939662
Gebraucht Hardcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Hervorragend. Zustand: Hervorragend | Seiten: 160 | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 40310420/1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 93,51
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Tanaka-Yamawaki, Mieko|Ikura, Yumihiko
ISBN 10: 9811939667 ISBN 13: 9789811939662
Neu Hardcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents the novel approach of analyzing large-sized rectangular-shaped numerical data (so-called big data). The essence of this approach is to grasp the meaning of the data instantly, without getting into the details of individual data. Unli. Bestandsnummer des Verkäufers 600122702

Verkäufer kontaktieren

Neu kaufen

EUR 101,04
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Yumihiko Ikura
ISBN 10: 9811939667 ISBN 13: 9789811939662
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -This book presents the novel approach of analyzing large-sized rectangular-shaped numerical data (so-called big data). The essence of this approach is to grasp the 'meaning' of the data instantly, without getting into the details of individual data. Unlike conventional approaches of principal component analysis, randomness tests, and visualization methods, the authors' approach has the benefits of universality and simplicity of data analysis, regardless of data types, structures, or specific field of science.First, mathematical preparation is described. The RMT-PCA and the RMT-test utilize the cross-correlation matrix of time series, C = XXT, where X represents a rectangular matrix of N rows and L columns and XT represents the transverse matrix of X. Because C is symmetric, namely, C = CT, it can be converted to a diagonal matrix of eigenvalues by a similarity transformation SCS-1 = SCST using an orthogonal matrix S. When N is significantly large, the histogram of the eigenvalue distribution can be compared to the theoretical formula derived in the context of the random matrix theory (RMT, in abbreviation).Then the RMT-PCA applied to high-frequency stock prices in Japanese and American markets is dealt with. This approach proves its effectiveness in extracting 'trendy' business sectors of the financial market over the prescribed time scale. In this case, X consists of N stock- prices of length L, and the correlation matrix C is an N by N square matrix, whose element at the i-th row and j-th column is the inner product of the price time series of the length L of the i-th stock and the j-th stock of the equal length L.Next, the RMT-test is applied to measure randomness of various random number generators, including algorithmically generated random numbers and physically generated random numbers.The book concludes by demonstrating two applications of the RMT-test: (1) a comparison of hash functions, and (2) stock prediction by means of randomness, including a new index of off-randomness related to market decline.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 160 pp. Englisch. Bestandsnummer des Verkäufers 9789811939662

Verkäufer kontaktieren

Neu kaufen

EUR 117,69
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Yumihiko Ikura
ISBN 10: 9811939667 ISBN 13: 9789811939662
Neu Hardcover
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents the novel approach of analyzing large-sized rectangular-shaped numerical data (so-called big data). The essence of this approach is to grasp the 'meaning' of the data instantly, without getting into the details of individual data. Unlike conventional approaches of principal component analysis, randomness tests, and visualization methods, the authors' approach has the benefits of universality and simplicity of data analysis, regardless of data types, structures, or specific field of science. First, mathematical preparation is described. The RMT-PCA and the RMT-test utilize the cross-correlation matrix of time series,C=XXT, whereXrepresents a rectangular matrix ofNrows andLcolumns andXTrepresents the transverse matrix ofX. BecauseCis symmetric, namely,C=CT, it can be converted to a diagonal matrix of eigenvalues by a similarity transformationSCS-1=SCSTusing an orthogonal matrixS. WhenNis significantly large, the histogram of the eigenvalue distribution can be compared to the theoretical formula derived in the context of the random matrix theory (RMT, in abbreviation). Then the RMT-PCA applied to high-frequency stock prices in Japanese and American markets is dealt with. This approach proves its effectiveness in extracting 'trendy' business sectors of the financial market over the prescribed time scale. In this case,Xconsists ofNstock- prices of lengthL, and the correlation matrixCis anNbyNsquare matrix, whose element at thei-th row andj-th column is the inner product of the price time series of the lengthLof thei-th stock and thej-th stock of the equal lengthL. Next, the RMT-test is applied to measure randomness of various random number generators, including algorithmically generated random numbers and physically generated random numbers. The book concludes by demonstrating two applications of the RMT-test: (1) a comparison of hash functions, and (2) stock prediction by means of randomness, including a new index of off-randomness related to market decline. 160 pp. Englisch. Bestandsnummer des Verkäufers 9789811939662

Verkäufer kontaktieren

Neu kaufen

EUR 117,69
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Yumihiko Ikura
ISBN 10: 9811939667 ISBN 13: 9789811939662
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents the novel approach of analyzing large-sized rectangular-shaped numerical data (so-called big data). The essence of this approach is to grasp the 'meaning' of the data instantly, without getting into the details of individual data. Unlike conventional approaches of principal component analysis, randomness tests, and visualization methods, the authors' approach has the benefits of universality and simplicity of data analysis, regardless of data types, structures, or specific field of science. First, mathematical preparation is described. The RMT-PCA and the RMT-test utilize the cross-correlation matrix of time series,C=XXT, whereXrepresents a rectangular matrix ofNrows andLcolumns andXTrepresents the transverse matrix ofX. BecauseCis symmetric, namely,C=CT, it can be converted to a diagonal matrix of eigenvalues by a similarity transformationSCS-1=SCSTusing an orthogonal matrixS. WhenNis significantly large, the histogram of the eigenvalue distribution can be compared to the theoretical formula derived in the context of the random matrix theory (RMT, in abbreviation). Then the RMT-PCA applied to high-frequency stock prices in Japanese and American markets is dealt with. This approach proves its effectiveness in extracting 'trendy' business sectors of the financial market over the prescribed time scale. In this case,Xconsists ofNstock- prices of lengthL, and the correlation matrixCis anNbyNsquare matrix, whose element at thei-th row andj-th column is the inner product of the price time series of the lengthLof thei-th stock and thej-th stock of the equal lengthL. Next, the RMT-test is applied to measure randomness of various random number generators, including algorithmically generated random numbers and physically generated random numbers. The book concludes by demonstrating two applications of the RMT-test: (1) a comparison of hash functions, and (2) stock prediction by means of randomness, including a new index of off-randomness related to market decline. Bestandsnummer des Verkäufers 9789811939662

Verkäufer kontaktieren

Neu kaufen

EUR 120,54
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Tanaka-Yamawaki, Mieko; Ikura, Yumihiko
Verlag: Springer, 2023
ISBN 10: 9811939667 ISBN 13: 9789811939662
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9789811939662_new

Verkäufer kontaktieren

Neu kaufen

EUR 128,64
Währung umrechnen
Versand: EUR 5,76
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Tanaka-Yamawaki, Mieko; Ikura, Yumihiko
Verlag: Springer, 2023
ISBN 10: 9811939667 ISBN 13: 9789811939662
Neu Hardcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 26396049466

Verkäufer kontaktieren

Neu kaufen

EUR 130,89
Währung umrechnen
Versand: EUR 7,70
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Tanaka-Yamawaki, Mieko; Ikura, Yumihiko
Verlag: Springer, 2023
ISBN 10: 9811939667 ISBN 13: 9789811939662
Neu Hardcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 401376229

Verkäufer kontaktieren

Neu kaufen

EUR 136,19
Währung umrechnen
Versand: EUR 10,23
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Tanaka-Yamawaki, Mieko; Ikura, Yumihiko
Verlag: Springer, 2023
ISBN 10: 9811939667 ISBN 13: 9789811939662
Neu Hardcover
Print-on-Demand

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18396049456

Verkäufer kontaktieren

Neu kaufen

EUR 162,09
Währung umrechnen
Versand: EUR 2,30
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Tanaka-yamawaki, Mieko/ Ikura, Yumihiko
Verlag: Springer Nature, 2023
ISBN 10: 9811939667 ISBN 13: 9789811939662
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 159 pages. 9.25x6.10x9.21 inches. In Stock. Bestandsnummer des Verkäufers x-9811939667

Verkäufer kontaktieren

Neu kaufen

EUR 164,61
Währung umrechnen
Versand: EUR 11,56
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb