Verwandte Artikel zu Deep Learning for Computational Problems in Hardware...

Deep Learning for Computational Problems in Hardware Security: Modeling Attacks on Strong Physically Unclonable Function Circuits - Softcover

 
9789811940187: Deep Learning for Computational Problems in Hardware Security: Modeling Attacks on Strong Physically Unclonable Function Circuits

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent "modeling attacks" on Physically Unclonable Function (PUF) circuits, which are promising hardware security primitives. The volume is self-contained and includes a comprehensive background on PUF circuits, and the necessary mathematical foundation of traditional and advanced machine learning techniques such as support vector machines, logistic regression, neural networks, and deep learning. This book can be used as a self-learning resource for researchers and practitioners of hardware security, and will also be suitable for graduate-level courses on hardware security and application of machine learning in hardware security. A stand-out feature of the book is the availability of reference software code and datasets to replicate the experiments described in the book.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie finden Ihr gewünschtes Buch nicht? Wir suchen weiter für Sie. Sobald einer unserer Buchverkäufer das Buch bei AbeBooks anbietet, werden wir Sie informieren!

Kaufgesuch aufgeben

Weitere beliebte Ausgaben desselben Titels

9789811940163: Deep Learning for Computational Problems in Hardware Security: Modeling Attacks on Strong Physically Unclonable Function Circuits: 1052 (Studies in Computational Intelligence)

Vorgestellte Ausgabe

ISBN 10:  9811940169 ISBN 13:  9789811940163
Verlag: Springer, 2022
Hardcover