This book characterizes the open-loop and closed-loop solvability for time-delayed linear quadratic optimal control problems. Different from the existing literature, in the current book, we present a theory of deterministic LQ problems with delays which has several new features:
Our system is time-varying, with both the state equation and cost functional being allowed to include discrete and distributed delays, both in the state and the control. We take different approaches to discuss the unboundedness of the control operator.
The open-loop solvability of the lifted problem is characterized by the solvability of a system of forward-backward integral evolution equations and the convexity condition of the cost functional. Surprisingly, the adjoint equations involve some coupled partial differential equations, which is significantly different from that in the literature, where, the adjoint equations are all some anticipated backward ordinary differential equations.
The closed-loop solvability is characterized by the solvability of three equivalent integral operator-valued Riccati equations and two equivalent backward integral evolution equations which are much easier to handle than the differential operator-valued Riccati equations used in the literature to study similar problems.
The closed-loop representation of open-loop optimal control is presented through three equivalent integral operator-valued Riccati equations.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Weijun Meng currently is engaging in her postdoctoral research at Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P. R. China. She had a PhD degree from Shandong University, P. R. China. Her main research interests include stochastic optimal control, delayed stochastic systems and Stackelberg stochastic differential games.
Jingtao Shi currently is a professor at Shandong University, P. R. China. He had a PhD degree from Shandong University, P. R. China. His main research interests include stochastic optimal control, differential games, leader-follower games, delayed stochastic systems, forward-backward stochastic systems and mathematical finance.
Jiongmin Yong currently is a professor at University of Central Florida, USA. He had a PhD degree from Purdue University, USA. His main research interests include optimal control, stochastic differential/integral equations, and mathematical finance.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book characterizes the open-loop and closed-loop solvability for time-delayed linear quadratic optimal control problems. Different from the existing literature, in the current book, we present a theory of deterministic LQ problems with delays which has several new features:Our system is time-varying, with both the state equation and cost functional being allowed to include discrete and distributed delays, both in the state and the control. We take different approaches to discuss the unboundedness of the control operator.The open-loop solvability of the lifted problem is characterized by the solvability of a system of forward-backward integral evolution equations and the convexity condition of the cost functional. Surprisingly, the adjoint equations involve some coupled partial differential equations, which is significantly different from that in the literature, where, the adjoint equations are all some anticipated backward ordinary differential equations.The closed-loop solvability is characterized by the solvability of three equivalent integral operator-valued Riccati equations and two equivalent backward integral evolution equations which are much easier to handle than the differential operator-valued Riccati equations used in the literature to study similar problems.The closed-loop representation of open-loop optimal control is presented through three equivalent integral operator-valued Riccati equations. 150 pp. Englisch. Bestandsnummer des Verkäufers 9789819618965
Anzahl: 2 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers S0-9789819618965
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book characterizes the open-loop and closed-loop solvability for time-delayed linear quadratic optimal control problems. Different from the existing literature, in the current book, we present a theory of deterministic LQ problems with delays which has several new features:Our system is time-varying, with both the state equation and cost functional being allowed to include discrete and distributed delays, both in the state and the control. We take different approaches to discuss the unboundedness of the control operator.The open-loop solvability of the lifted problem is characterized by the solvability of a system of forward-backward integral evolution equations and the convexity condition of the cost functional. Surprisingly, the adjoint equations involve some coupled partial differential equations, which is significantly different from that in the literature, where, the adjoint equations are all some anticipated backward ordinary differential equations.The closed-loop solvability is characterized by the solvability of three equivalent integral operator-valued Riccati equations and two equivalent backward integral evolution equations which are much easier to handle than the differential operator-valued Riccati equations used in the literature to study similar problems.The closed-loop representation of open-loop optimal control is presented through three equivalent integral operator-valued Riccati equations. Bestandsnummer des Verkäufers 9789819618965
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 130 pages. 9.25x6.10x9.21 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __9819618967
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9789819618965_new
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9789819618965
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18404166202
Anzahl: 4 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26404166192
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 408988143
Anzahl: 4 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Paperback. Zustand: new. Paperback. This book characterizes the open-loop and closed-loop solvability for time-delayed linear quadratic optimal control problems. Different from the existing literature, in the current book, we present a theory of deterministic LQ problems with delays which has several new features:Our system is time-varying, with both the state equation and cost functional being allowed to include discrete and distributed delays, both in the state and the control. We take different approaches to discuss the unboundedness of the control operator.The open-loop solvability of the lifted problem is characterized by the solvability of a system of forward-backward integral evolution equations and the convexity condition of the cost functional. Surprisingly, the adjoint equations involve some coupled partial differential equations, which is significantly different from that in the literature, where, the adjoint equations are all some anticipated backward ordinary differential equations.The closed-loop solvability is characterized by the solvability of three equivalent integral operator-valued Riccati equations and two equivalent backward integral evolution equations which are much easier to handle than the differential operator-valued Riccati equations used in the literature to study similar problems.The closed-loop representation of open-loop optimal control is presented through three equivalent integral operator-valued Riccati equations. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9789819618965
Anzahl: 1 verfügbar