Mastering Agentic AI Workflows with DSPy is the definitive hands-on guide to building reliable, transparent, and constraint-driven AI agents using DSPy. This volume focuses on the fundamentals of declarative agent engineering—teaching you how to design modular predictors, define precise behaviors with signatures, and construct stable workflows that eliminate the unpredictability of raw prompting.
You’ll learn how DSPy organizes reasoning, manages constraints, and structures outputs through signatures and modules. Step by step, the book walks you through building zero-shot and few-shot modules, designing retrieval-enhanced workflows, shaping behavior with curated datasets, and evaluating agent consistency through DSPy’s built-in optimization and evaluation tools.
The book emphasizes correctness, verification, and reproducibility at every stage—showing how to architect workflows that are explainable, debuggable, and maintainable in real production environments.
What You Will Learn
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: California Books, Miami, FL, USA
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers I-9798279055296
Anzahl: Mehr als 20 verfügbar