Verwandte Artikel zu Advanced Deep Learning Techniques in Algorithmic Day...

Advanced Deep Learning Techniques in Algorithmic Day Trading With CUDA (GPU Mastery Series: Unlocking CUDA's Power using pyCUDA) - Softcover

 
9798301343544: Advanced Deep Learning Techniques in Algorithmic Day Trading With CUDA (GPU Mastery Series: Unlocking CUDA's Power using pyCUDA)
  • VerlagIndependently published
  • Erscheinungsdatum2024
  • ISBN 13 9798301343544
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten420

Gratis für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

Suchergebnisse für Advanced Deep Learning Techniques in Algorithmic Day...

Beispielbild für diese ISBN

Flux, Jamie
Verlag: Independently published, 2024
ISBN 13: 9798301343544
Neu Softcover
Print-on-Demand

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand. Bestandsnummer des Verkäufers I-9798301343544

Verkäufer kontaktieren

Neu kaufen

EUR 38,32
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Jamie Flux
Verlag: Independently Published, 2024
ISBN 13: 9798301343544
Neu Paperback

Anbieter: Grand Eagle Retail, Fairfield, OH, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. Unlock the forefront of algorithmic day trading with this comprehensive exploration into advanced deep learning techniques. This authoritative volume presents cutting-edge algorithms and innovative methodologies that fuse the complexities of financial markets with the rigor of deep learning architectures. Designed for professional quantitative analysts, algorithmic traders, and advanced researchers, this work delves into sophisticated topics such as: Transformer-Based Multivariate Time Series Forecasting: Harness the power of self-attention mechanisms to capture complex temporal dependencies across multiple financial indicators, enhancing predictive capabilities in volatile markets. Graph Neural Networks for Modeling Inter-stock Relationships: Discover how to represent stocks as nodes within a graph structure, employing spectral graph convolutions and attention mechanisms to model intricate market dynamics and optimize portfolio strategies. Deep Reinforcement Learning with Adversarial Training: Explore algorithms that enhance trading agents' robustness by simulating market manipulations, utilizing minimax formulations and robust optimization techniques to improve decision-making under adverse conditions. Variational Autoencoders for Anomaly Detection: Learn to detect anomalies in stock price movements by modeling uncertainty with probabilistic latent representations, employing hierarchical latent variables and optimizing evidence lower bound (ELBO) metrics. Neural Ordinary Differential Equations for Continuous-Time Financial Modeling: Integrate continuous-time dynamics into neural network architectures to model the fluid nature of financial systems, leveraging advanced mathematical concepts like adjoint sensitivity methods for efficient backpropagation. Meta-Learning for Adaptive Trading Strategies: Implement model-agnostic meta-learning algorithms that enable rapid adaptation to changing market conditions, with detailed discussions on meta-gradient computations and regularization techniques to prevent overfitting. Energy-Based Models for Arbitrage Opportunity Detection: Apply energy-based modeling to identify arbitrage opportunities by assigning energy scores to market states, utilizing contrastive divergence training and gradient computations of energy functions. Each chapter presents thorough mathematical formulations, detailed algorithmic implementations, and practical insights, pushing the boundaries of current knowledge. The text integrates interdisciplinary perspectives, from stochastic differential equations and Bayesian inference to manifold regularization and probabilistic programming. Readers will benefit from: In-depth Theoretical Explanations: Comprehensive coverage of advanced mathematical concepts that underpin modern deep learning algorithms in the context of financial markets. Innovative Algorithmic Strategies: Original approaches and novel methodologies for solving complex problems in algorithmic trading, with practical examples and code implementations. Cutting-Edge Research Integration: Incorporation of the latest research breakthroughs, offering insights into the future of deep learning applications in finance. Elevate your understanding of algorithmic trading and position yourself at the vanguard of financial technology innovation with this essential resource. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9798301343544

Verkäufer kontaktieren

Neu kaufen

EUR 43,24
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Flux, Jamie
Verlag: Independently published, 2024
ISBN 13: 9798301343544
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9798301343544_new

Verkäufer kontaktieren

Neu kaufen

EUR 40,42
Währung umrechnen
Versand: EUR 14,22
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Flux, Jamie
ISBN 13: 9798301343544
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware - Unlock the forefront of algorithmic day trading with this comprehensive exploration into advanced deep learning techniques. This authoritative volume presents cutting-edge algorithms and innovative methodologies that fuse the complexities of financial markets with the rigor of deep learning architectures. Bestandsnummer des Verkäufers 9798301343544

Verkäufer kontaktieren

Neu kaufen

EUR 54,00
Währung umrechnen
Versand: EUR 30,80
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Jamie Flux
Verlag: Independently Published, 2024
ISBN 13: 9798301343544
Neu Paperback

Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. Unlock the forefront of algorithmic day trading with this comprehensive exploration into advanced deep learning techniques. This authoritative volume presents cutting-edge algorithms and innovative methodologies that fuse the complexities of financial markets with the rigor of deep learning architectures. Designed for professional quantitative analysts, algorithmic traders, and advanced researchers, this work delves into sophisticated topics such as: Transformer-Based Multivariate Time Series Forecasting: Harness the power of self-attention mechanisms to capture complex temporal dependencies across multiple financial indicators, enhancing predictive capabilities in volatile markets. Graph Neural Networks for Modeling Inter-stock Relationships: Discover how to represent stocks as nodes within a graph structure, employing spectral graph convolutions and attention mechanisms to model intricate market dynamics and optimize portfolio strategies. Deep Reinforcement Learning with Adversarial Training: Explore algorithms that enhance trading agents' robustness by simulating market manipulations, utilizing minimax formulations and robust optimization techniques to improve decision-making under adverse conditions. Variational Autoencoders for Anomaly Detection: Learn to detect anomalies in stock price movements by modeling uncertainty with probabilistic latent representations, employing hierarchical latent variables and optimizing evidence lower bound (ELBO) metrics. Neural Ordinary Differential Equations for Continuous-Time Financial Modeling: Integrate continuous-time dynamics into neural network architectures to model the fluid nature of financial systems, leveraging advanced mathematical concepts like adjoint sensitivity methods for efficient backpropagation. Meta-Learning for Adaptive Trading Strategies: Implement model-agnostic meta-learning algorithms that enable rapid adaptation to changing market conditions, with detailed discussions on meta-gradient computations and regularization techniques to prevent overfitting. Energy-Based Models for Arbitrage Opportunity Detection: Apply energy-based modeling to identify arbitrage opportunities by assigning energy scores to market states, utilizing contrastive divergence training and gradient computations of energy functions. Each chapter presents thorough mathematical formulations, detailed algorithmic implementations, and practical insights, pushing the boundaries of current knowledge. The text integrates interdisciplinary perspectives, from stochastic differential equations and Bayesian inference to manifold regularization and probabilistic programming. Readers will benefit from: In-depth Theoretical Explanations: Comprehensive coverage of advanced mathematical concepts that underpin modern deep learning algorithms in the context of financial markets. Innovative Algorithmic Strategies: Original approaches and novel methodologies for solving complex problems in algorithmic trading, with practical examples and code implementations. Cutting-Edge Research Integration: Incorporation of the latest research breakthroughs, offering insights into the future of deep learning applications in finance. Elevate your understanding of algorithmic trading and position yourself at the vanguard of financial technology innovation with this essential resource. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9798301343544

Verkäufer kontaktieren

Neu kaufen

EUR 43,99
Währung umrechnen
Versand: EUR 43,91
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb