Verwandte Artikel zu Optimizing Retrieval: From Tokenization To Vector Quantizati...

Optimizing Retrieval: From Tokenization To Vector Quantization - Softcover

 
9798306867977: Optimizing Retrieval: From Tokenization To Vector Quantization

Inhaltsangabe

"Optimizing Retrieval: From Tokenization to Vector Quantization"

This book provides a deep dive into the core techniques that underpin modern information retrieval systems. It guides readers through the crucial steps, starting with the fundamental process of tokenization – breaking down text into meaningful units. From there, the book explores how these tokens are transformed into numerical representations, a critical step for efficient processing.

The core of the book lies in vector quantization, a powerful technique that compresses and represents high-dimensional data (like text) into lower-dimensional spaces while preserving essential information. This enables faster search, reduced storage requirements, and improved retrieval accuracy.1

Key Topics Covered:

  • Tokenization Strategies: Exploring various approaches, including word-level, subword-level (like byte-pair encoding), and character-level tokenization.
  • Text Embedding Techniques: Delving into methods like Word2Vec, GloVe, and more recently, Transformer-based models like BERT, which capture semantic relationships between words.2
  • Vector Quantization Algorithms: Examining different approaches, such as k-means, product quantization, and hierarchical vector quantization, and their applications in information retrieval.
  • Retrieval Models: Exploring how vector quantization is integrated into various retrieval models, including nearest neighbor search, approximate nearest neighbor search, and retrieval augmented generation.
  • Practical Applications: Discussing real-world applications of these techniques, such as search engines, recommendation systems, and question answering systems.

"Optimizing Retrieval: From Tokenization to Vector Quantization" is a valuable resource for researchers, practitioners, and students interested in the cutting-edge techniques driving advancements in information retrieval. It provides a comprehensive understanding of the key concepts and their practical implications, empowering readers to build and optimize high-performance retrieval systems.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagIndependently published
  • Erscheinungsdatum2025
  • ISBN 13 9798306867977
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten84
  • Kontakt zum HerstellerNicht verfügbar

EUR 5,85 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Optimizing Retrieval: From Tokenization To Vector Quantizati...

Beispielbild für diese ISBN

Lucas Jr, Oliver
Verlag: Independently published, 2025
ISBN 13: 9798306867977
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9798306867977_new

Verkäufer kontaktieren

Neu kaufen

EUR 17,65
Währung umrechnen
Versand: EUR 5,85
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Lucas Jr, Oliver
ISBN 13: 9798306867977
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware - 'Optimizing Retrieval: From Tokenization to Vector Quantization'. Bestandsnummer des Verkäufers 9798306867977

Verkäufer kontaktieren

Neu kaufen

EUR 26,00
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Lucas Jr, Oliver
Verlag: Independently published, 2025
ISBN 13: 9798306867977
Neu Softcover
Print-on-Demand

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand. Bestandsnummer des Verkäufers I-9798306867977

Verkäufer kontaktieren

Neu kaufen

EUR 17,83
Währung umrechnen
Versand: EUR 8,66
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Oliver Lucas, Jr
Verlag: Independently Published, 2025
ISBN 13: 9798306867977
Neu Paperback

Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. "Optimizing Retrieval: From Tokenization to Vector Quantization"This book provides a deep dive into the core techniques that underpin modern information retrieval systems. It guides readers through the crucial steps, starting with the fundamental process of tokenization - breaking down text into meaningful units. From there, the book explores how these tokens are transformed into numerical representations, a critical step for efficient processing.The core of the book lies in vector quantization, a powerful technique that compresses and represents high-dimensional data (like text) into lower-dimensional spaces while preserving essential information. This enables faster search, reduced storage requirements, and improved retrieval accuracy.1Key Topics Covered: Tokenization Strategies: Exploring various approaches, including word-level, subword-level (like byte-pair encoding), and character-level tokenization.Text Embedding Techniques: Delving into methods like Word2Vec, GloVe, and more recently, Transformer-based models like BERT, which capture semantic relationships between words.2Vector Quantization Algorithms: Examining different approaches, such as k-means, product quantization, and hierarchical vector quantization, and their applications in information retrieval.Retrieval Models: Exploring how vector quantization is integrated into various retrieval models, including nearest neighbor search, approximate nearest neighbor search, and retrieval augmented generation.Practical Applications: Discussing real-world applications of these techniques, such as search engines, recommendation systems, and question answering systems."Optimizing Retrieval: From Tokenization to Vector Quantization" is a valuable resource for researchers, practitioners, and students interested in the cutting-edge techniques driving advancements in information retrieval. It provides a comprehensive understanding of the key concepts and their practical implications, empowering readers to build and optimize high-performance retrieval systems. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9798306867977

Verkäufer kontaktieren

Neu kaufen

EUR 22,38
Währung umrechnen
Versand: EUR 29,39
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Oliver Lucas, Jr
Verlag: Independently Published, 2025
ISBN 13: 9798306867977
Neu Paperback

Anbieter: Grand Eagle Retail, Fairfield, OH, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. "Optimizing Retrieval: From Tokenization to Vector Quantization"This book provides a deep dive into the core techniques that underpin modern information retrieval systems. It guides readers through the crucial steps, starting with the fundamental process of tokenization - breaking down text into meaningful units. From there, the book explores how these tokens are transformed into numerical representations, a critical step for efficient processing.The core of the book lies in vector quantization, a powerful technique that compresses and represents high-dimensional data (like text) into lower-dimensional spaces while preserving essential information. This enables faster search, reduced storage requirements, and improved retrieval accuracy.1Key Topics Covered: Tokenization Strategies: Exploring various approaches, including word-level, subword-level (like byte-pair encoding), and character-level tokenization.Text Embedding Techniques: Delving into methods like Word2Vec, GloVe, and more recently, Transformer-based models like BERT, which capture semantic relationships between words.2Vector Quantization Algorithms: Examining different approaches, such as k-means, product quantization, and hierarchical vector quantization, and their applications in information retrieval.Retrieval Models: Exploring how vector quantization is integrated into various retrieval models, including nearest neighbor search, approximate nearest neighbor search, and retrieval augmented generation.Practical Applications: Discussing real-world applications of these techniques, such as search engines, recommendation systems, and question answering systems."Optimizing Retrieval: From Tokenization to Vector Quantization" is a valuable resource for researchers, practitioners, and students interested in the cutting-edge techniques driving advancements in information retrieval. It provides a comprehensive understanding of the key concepts and their practical implications, empowering readers to build and optimize high-performance retrieval systems. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9798306867977

Verkäufer kontaktieren

Neu kaufen

EUR 19,57
Währung umrechnen
Versand: EUR 64,93
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb