Verwandte Artikel zu Variational Autoencoders: 33 Comprehensively Commented...

Variational Autoencoders: 33 Comprehensively Commented Python Implementations of Variational Autoencoders(VAEs) - Softcover

 
9798307529843: Variational Autoencoders: 33 Comprehensively Commented Python Implementations of Variational Autoencoders(VAEs)

Inhaltsangabe

A Transformative Exploration of Variational Autoencoders and Advanced Generative Modeling

Refine your mastery of modern machine learning with a comprehensive framework that demystifies Variational Autoencoders (VAEs). From fundamental architectures to inventive methods spanning convolutional networks, disentangled representations, and multimodal learning, this resource provides step-by-step Python implementations for 33 cutting-edge VAE algorithms. Designed for data scientists, researchers, and advanced practitioners, it offers in-depth explanations and best practices on how to design, debug, and optimize your own generative models.

Each practical chapter showcases a unique application through clear, annotated Python code. You will learn to seamlessly integrate theoretical concepts into robust pipelines—capable of handling images, text, time series, 3D data, and beyond.


Key Benefits
  • High-Impact Techniques: Implement specialized VAEs such as Beta-VAE, FactorVAE, Hierarchical VAE, and VQ-VAE for diverse research and industry use cases.
  • Real-World Examples: Acquire the know-how to adapt model architectures for noise reduction, anomaly detection, style transfer, text generation, and more.
  • Performance Insights: Fine-tune hyperparameters and accelerate training processes with practical tips that spare you from common pitfalls.


Specific Algorithms Covered
  • Basic Variational Autoencoder for MNIST – Ideal as a starting point for newcomers, with a clear walkthrough of the reparameterization trick.
  • Conditional VAE for Image Synthesis – Harness class labels to guide the generation of high-fidelity, label-specific images.
  • VAE-GAN for High-Fidelity Image Synthesis – Merge the synergy of VAEs and GANs to produce exceptionally realistic outputs.
  • VAE for Time Series Anomaly Detection – Identify abnormalities in sequential data by monitoring reconstruction errors.
  • Hierarchical VAE for Complex Distributions – Stack multiple latent layers to capture multi-scale features and deeper abstractions.
  • VQ-VAE for Discrete Latent Representations – Reduce reconstruction error in tasks involving speech or repeated patterns by quantizing the hidden space.
  • Graph VAE for Molecule and Network Generation – Create novel molecular graphs or network structures by leveraging Graph Neural Networks within the VAE framework.

Elevate your career in deep learning, automation, and research with a resource that thoroughly unpacks the latest frontiers of VAE technology—backed by extensive, customizable Python code.


Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 5,70 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Variational Autoencoders: 33 Comprehensively Commented...

Beispielbild für diese ISBN

Flux, Jamie
Verlag: Independently published, 2025
ISBN 13: 9798307529843
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9798307529843_new

Verkäufer kontaktieren

Neu kaufen

EUR 31,22
Währung umrechnen
Versand: EUR 5,70
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Flux, Jamie
Verlag: Independently published, 2025
ISBN 13: 9798307529843
Neu Softcover
Print-on-Demand

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand. Bestandsnummer des Verkäufers I-9798307529843

Verkäufer kontaktieren

Neu kaufen

EUR 29,14
Währung umrechnen
Versand: EUR 8,57
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Flux, Jamie
ISBN 13: 9798307529843
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware - Key Benefits. Bestandsnummer des Verkäufers 9798307529843

Verkäufer kontaktieren

Neu kaufen

EUR 43,00
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Jamie Flux
Verlag: Independently Published, 2025
ISBN 13: 9798307529843
Neu Paperback

Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. A Transformative Exploration of Variational Autoencoders and Advanced Generative Modeling Refine your mastery of modern machine learning with a comprehensive framework that demystifies Variational Autoencoders (VAEs). From fundamental architectures to inventive methods spanning convolutional networks, disentangled representations, and multimodal learning, this resource provides step-by-step Python implementations for 33 cutting-edge VAE algorithms. Designed for data scientists, researchers, and advanced practitioners, it offers in-depth explanations and best practices on how to design, debug, and optimize your own generative models. Each practical chapter showcases a unique application through clear, annotated Python code. You will learn to seamlessly integrate theoretical concepts into robust pipelines-capable of handling images, text, time series, 3D data, and beyond. Key BenefitsHigh-Impact Techniques: Implement specialized VAEs such as Beta-VAE, FactorVAE, Hierarchical VAE, and VQ-VAE for diverse research and industry use cases.Real-World Examples: Acquire the know-how to adapt model architectures for noise reduction, anomaly detection, style transfer, text generation, and more.Performance Insights: Fine-tune hyperparameters and accelerate training processes with practical tips that spare you from common pitfalls. Specific Algorithms CoveredBasic Variational Autoencoder for MNIST - Ideal as a starting point for newcomers, with a clear walkthrough of the reparameterization trick.Conditional VAE for Image Synthesis - Harness class labels to guide the generation of high-fidelity, label-specific images.VAE-GAN for High-Fidelity Image Synthesis - Merge the synergy of VAEs and GANs to produce exceptionally realistic outputs.VAE for Time Series Anomaly Detection - Identify abnormalities in sequential data by monitoring reconstruction errors.Hierarchical VAE for Complex Distributions - Stack multiple latent layers to capture multi-scale features and deeper abstractions.VQ-VAE for Discrete Latent Representations - Reduce reconstruction error in tasks involving speech or repeated patterns by quantizing the hidden space.Graph VAE for Molecule and Network Generation - Create novel molecular graphs or network structures by leveraging Graph Neural Networks within the VAE framework. Elevate your career in deep learning, automation, and research with a resource that thoroughly unpacks the latest frontiers of VAE technology-backed by extensive, customizable Python code. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9798307529843

Verkäufer kontaktieren

Neu kaufen

EUR 34,78
Währung umrechnen
Versand: EUR 28,63
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Jamie Flux
Verlag: Independently Published, 2025
ISBN 13: 9798307529843
Neu Paperback

Anbieter: Grand Eagle Retail, Mason, OH, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. A Transformative Exploration of Variational Autoencoders and Advanced Generative Modeling Refine your mastery of modern machine learning with a comprehensive framework that demystifies Variational Autoencoders (VAEs). From fundamental architectures to inventive methods spanning convolutional networks, disentangled representations, and multimodal learning, this resource provides step-by-step Python implementations for 33 cutting-edge VAE algorithms. Designed for data scientists, researchers, and advanced practitioners, it offers in-depth explanations and best practices on how to design, debug, and optimize your own generative models. Each practical chapter showcases a unique application through clear, annotated Python code. You will learn to seamlessly integrate theoretical concepts into robust pipelines-capable of handling images, text, time series, 3D data, and beyond. Key BenefitsHigh-Impact Techniques: Implement specialized VAEs such as Beta-VAE, FactorVAE, Hierarchical VAE, and VQ-VAE for diverse research and industry use cases.Real-World Examples: Acquire the know-how to adapt model architectures for noise reduction, anomaly detection, style transfer, text generation, and more.Performance Insights: Fine-tune hyperparameters and accelerate training processes with practical tips that spare you from common pitfalls. Specific Algorithms CoveredBasic Variational Autoencoder for MNIST - Ideal as a starting point for newcomers, with a clear walkthrough of the reparameterization trick.Conditional VAE for Image Synthesis - Harness class labels to guide the generation of high-fidelity, label-specific images.VAE-GAN for High-Fidelity Image Synthesis - Merge the synergy of VAEs and GANs to produce exceptionally realistic outputs.VAE for Time Series Anomaly Detection - Identify abnormalities in sequential data by monitoring reconstruction errors.Hierarchical VAE for Complex Distributions - Stack multiple latent layers to capture multi-scale features and deeper abstractions.VQ-VAE for Discrete Latent Representations - Reduce reconstruction error in tasks involving speech or repeated patterns by quantizing the hidden space.Graph VAE for Molecule and Network Generation - Create novel molecular graphs or network structures by leveraging Graph Neural Networks within the VAE framework. Elevate your career in deep learning, automation, and research with a resource that thoroughly unpacks the latest frontiers of VAE technology-backed by extensive, customizable Python code. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9798307529843

Verkäufer kontaktieren

Neu kaufen

EUR 29,13
Währung umrechnen
Versand: EUR 64,31
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb