A deep dive into the theory and mathematics behind neural networks, beyond typical AI applications.
Area of focus:
- Grasp complex statistical learning theories and their application in neural frameworks.
- Explore universal approximation theorems to understand network capabilities.
- Delve into the trade-offs between neural network depth and width.
- Analyze the optimization landscapes to enhance training performance.
- Study advanced gradient optimization methods for efficient training.
- Investigate generalization theories applicable to deep learning models.
- Examine regularization techniques with a strong theoretical foundation.
- Apply the Information Bottleneck principle for better learning insights.
- Understand the role of stochasticity and its impact on neural networks.
- Master Bayesian techniques for uncertainty quantification and posterior inference.
- Model neural networks using dynamical systems theory for stability analysis.
- Learn representation learning and the geometry of feature spaces for transfer learning.
- Explore theoretical insights into Convolutional Neural Networks (CNNs).
- Analyze Recurrent Neural Networks (RNNs) for sequence data and temporal predictions.
- Discover the theoretical underpinnings of attention mechanisms and transformers.
- Study generative models like VAEs and GANs for creating new data.
- Dive into energy-based models and Boltzmann machines for unsupervised learning.
- Understand neural tangent kernel frameworks and infinite width networks.
- Examine symmetries and invariances in neural network design.
- Explore optimization methodologies beyond traditional gradient descent.
- Enhance model robustness by learning about adversarial examples.
- Address challenges in continual learning and overcome catastrophic forgetting.
- Interpret sparse coding theories and design efficient, interpretable models.
- Link neural networks with differential equations for theoretical advancements.
- Analyze graph neural networks for relational learning on complex data structures.
- Grasp the principles of meta-learning for quick adaptation and hypothesis search.
- Delve into quantum neural networks for pushing the boundaries of computation.
- Investigate neuromorphic computing models such as spiking neural networks.
- Decode neural networks' decisions through explainability and interpretability methods.
- Reflect on the ethical and philosophical implications of advanced AI technologies.
- Discuss the theoretical limitations and unresolved challenges of neural networks.
- Learn how topological data analysis informs neural network decision boundaries.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 48339729-n
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers I-9798339808039
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 48339729
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers LU-9798339808039
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Paperback. Zustand: New. Bestandsnummer des Verkäufers LU-9798339808039
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9798339808039_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 48339729-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 48339729
Anzahl: Mehr als 20 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Paperback. Zustand: new. Paperback. A deep dive into the theory and mathematics behind neural networks, beyond typical AI applications. Area of focus: - Grasp complex statistical learning theories and their application in neural frameworks.- Explore universal approximation theorems to understand network capabilities.- Delve into the trade-offs between neural network depth and width.- Analyze the optimization landscapes to enhance training performance.- Study advanced gradient optimization methods for efficient training.- Investigate generalization theories applicable to deep learning models.- Examine regularization techniques with a strong theoretical foundation.- Apply the Information Bottleneck principle for better learning insights.- Understand the role of stochasticity and its impact on neural networks.- Master Bayesian techniques for uncertainty quantification and posterior inference.- Model neural networks using dynamical systems theory for stability analysis.- Learn representation learning and the geometry of feature spaces for transfer learning.- Explore theoretical insights into Convolutional Neural Networks (CNNs).- Analyze Recurrent Neural Networks (RNNs) for sequence data and temporal predictions.- Discover the theoretical underpinnings of attention mechanisms and transformers.- Study generative models like VAEs and GANs for creating new data.- Dive into energy-based models and Boltzmann machines for unsupervised learning.- Understand neural tangent kernel frameworks and infinite width networks.- Examine symmetries and invariances in neural network design.- Explore optimization methodologies beyond traditional gradient descent.- Enhance model robustness by learning about adversarial examples.- Address challenges in continual learning and overcome catastrophic forgetting.- Interpret sparse coding theories and design efficient, interpretable models.- Link neural networks with differential equations for theoretical advancements.- Analyze graph neural networks for relational learning on complex data structures.- Grasp the principles of meta-learning for quick adaptation and hypothesis search.- Delve into quantum neural networks for pushing the boundaries of computation.- Investigate neuromorphic computing models such as spiking neural networks.- Decode neural networks' decisions through explainability and interpretability methods.- Reflect on the ethical and philosophical implications of advanced AI technologies.- Discuss the theoretical limitations and unresolved challenges of neural networks.- Learn how topological data analysis informs neural network decision boundaries. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9798339808039
Anzahl: 1 verfügbar
Anbieter: Rarewaves USA United, OSWEGO, IL, USA
Paperback. Zustand: New. Bestandsnummer des Verkäufers LU-9798339808039
Anzahl: Mehr als 20 verfügbar