Verwandte Artikel zu Beginning Anomaly Detection Using Python-Based Deep...

Beginning Anomaly Detection Using Python-Based Deep Learning: Implement Anomaly Detection Applications with Keras and PyTorch - Softcover

 
9798868800078: Beginning Anomaly Detection Using Python-Based Deep Learning: Implement Anomaly Detection Applications with Keras and PyTorch

Inhaltsangabe

This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning.

 

Beginning Anomaly Detection Using Python-Based Deep Learning begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders, recurrent neural networks (via LSTM), temporal convolutional networks, and transformers, with the latter three architectures applied to time-series anomaly detection. This edition has a new chapter on GANs (Generative Adversarial Networks), as well as new material covering  transformer architecture in the context of time-series anomaly detection. 

 

After completing this book, you will have a thorough understanding of anomaly detection as well as an assortment of methods to approach it in various contexts, including time-series data. Additionally, you will have gained an introduction to scikit-learn, GANs, transformers, Keras, and PyTorch, empowering you to create your own machine learning- or deep learning-based anomaly detectors.

 

What You Will Learn

  • Understand what anomaly detection is, why it it is important, and how it is applied
  • Grasp the core concepts of machine learning.
  • Master traditional machine learning approaches to anomaly detection using scikit-kearn.
  • Understand deep learning in Python using Keras and PyTorch
  • Process data through pandas and evaluate your model's performance using metrics like F1-score, precision, and recall
  • Apply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applications

 

Who This Book Is For

Data scientists and machine learning engineers of all levels of experience interested in learning the basics of deep learning applications in anomaly detection.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Suman Kalyan Adari is a machine learning research engineer. He obtained a B.S. in Computer Science at the University of Florida and a M.S. in Computer Science specializing in Machine Learning at Columbia University. He has been conducting deep learning research in adversarial machine learning since his freshman year at the University of Florida and presented at the IEEE Dependable Systems and Networks workshop on Dependable and Secure Machine Learning held in Portland, Oregon in June 2019. Currently, he works on various anomaly detection tasks spanning behavioral tracking and geospatial trajectory modeling.

He is passionate about deep learning, and specializes in various fields ranging from video processing, generative modeling, object tracking, time-series modeling, and more.

 

Sridhar Alla is the co-founder and CTO of Bluewhale, which helps organizations big and small in building AI-driven big data solutions and analytics, as well as SAS2PY, a powerful tool to automate migration of SAS workloads to Python-based environments using Pandas or PySpark. He is a published author and an avid presenter at numerous conferences, including Strata, Hadoop World, and Spark Summit. He also has several patents filed with the US PTO on large-scale computing and distributed systems. He has extensive hands-on experience in several technologies, including Spark, Flink, Hadoop, AWS, Azure, Tensorflow, Cassandra, and others. He spoke on Anomaly Detection Using Deep Learning at Strata SFO in March 2019 and also presented at Strata London in October 2019. He was born in Hyderabad, India and now lives in New Jersey, USA with his wife Rosie, his daughters Evelyn andMadelyn, and his son, Jayson. When he is not busy writing code, he loves to spend time with his family. He also enjoys training, coaching, and organizing meetups.

Von der hinteren Coverseite

This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning.

 

Beginning Anomaly Detection Using Python-Based Deep Learning begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders, recurrent neural networks (via LSTM), temporal convolutional networks, and transformers, with the latter three architectures applied to time-series anomaly detection. This edition has a new chapter on GANs (Generative Adversarial Networks), as well as new material covering  transformer architecture in the context of time-series anomaly detection. 

 

After completing this book, you will have a thorough understanding of anomaly detection as well as an assortment of methods to approach it in various contexts, including time-series data. Additionally, you will have gained an introduction to scikit-learn, GANs, transformers, Keras, and PyTorch, empowering you to create your own machine learning- or deep learning-based anomaly detectors.

 

You will:

  • Understand what anomaly detection is, why it it is important, and how it is applied
  • Grasp the core concepts of machine learning.
  • Master traditional machine learning approaches to anomaly detection using scikit-kearn.
  • Understand deep learning in Python using Keras and PyTorch
  • Process data through pandas and evaluate your model's performance using metrics like F1-score, precision, and recall
  • Apply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applications

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagApress
  • Erscheinungsdatum2024
  • ISBN 13 9798868800078
  • EinbandTapa blanda
  • SpracheEnglisch
  • Auflage2
  • Anzahl der Seiten548
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Wie neu
Unread book in perfect condition...
Diesen Artikel anzeigen

EUR 17,55 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

EUR 10,98 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Beginning Anomaly Detection Using Python-Based Deep...

Foto des Verkäufers

Adari, Suman Kalyan
Verlag: Apress 1/16/2024, 2024
ISBN 13: 9798868800078
Neu Paperback or Softback

Anbieter: BargainBookStores, Grand Rapids, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback or Softback. Zustand: New. Beginning Anomaly Detection Using Python-Based Deep Learning: Implement Anomaly Detection Applications with Keras and Pytorch 2.07. Book. Bestandsnummer des Verkäufers BBS-9798868800078

Verkäufer kontaktieren

Neu kaufen

EUR 39,01
Währung umrechnen
Versand: EUR 10,98
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Adari, Suman Kalyan; Alla, Sridhar
Verlag: Apress, 2024
ISBN 13: 9798868800078
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9798868800078

Verkäufer kontaktieren

Neu kaufen

EUR 41,60
Währung umrechnen
Versand: EUR 8,78
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Suman Kalyan Adari|Sridhar Alla
Verlag: Apress, 2024
ISBN 13: 9798868800078
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Beg-Int user level|Explains the machine learning workflow, from data processing through interpretation of model performanceFocuses on time-series with models like LSTM and TCN. Covers generative modeling via GANs and shows how to implement. Bestandsnummer des Verkäufers 1117411881

Verkäufer kontaktieren

Neu kaufen

EUR 53,17
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Adari, Suman Kalyan; Alla, Sridhar
Verlag: Apress, 2024
ISBN 13: 9798868800078
Neu Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 46748383-n

Verkäufer kontaktieren

Neu kaufen

EUR 36,62
Währung umrechnen
Versand: EUR 17,55
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Adari, Suman Kalyan; Alla, Sridhar
Verlag: Apress, 2024
ISBN 13: 9798868800078
Gebraucht Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 46748383

Verkäufer kontaktieren

Gebraucht kaufen

EUR 41,07
Währung umrechnen
Versand: EUR 17,55
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Sridhar Alla
Verlag: Apress Jan 2024, 2024
ISBN 13: 9798868800078
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning.Beginning Anomaly Detection Using Python-Based Deep Learning begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders, recurrent neural networks (via LSTM), temporal convolutional networks, and transformers, with the latter three architectures applied to time-series anomaly detection. This edition has a new chapter on GANs (Generative Adversarial Networks), as well as new material covering transformer architecture in the context of time-series anomaly detection.After completing this book, you will have a thorough understanding of anomaly detection as well as an assortment of methods to approach it in various contexts, including time-series data. Additionally, you will have gained an introduction to scikit-learn, GANs, transformers, Keras, and PyTorch, empowering you to create your own machine learning- or deep learning-based anomaly detectors.What You Will LearnUnderstand what anomaly detection is, why it it is important, and how it is appliedGrasp the core concepts of machine learning.Master traditional machine learning approaches to anomaly detection using scikit-kearn.Understand deep learning in Python using Keras and PyTorchProcess data through pandas and evaluate your model's performance using metrics like F1-score, precision, and recallApply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applicationsWho This Book Is ForData scientists and machine learning engineers of all levels of experience interested in learning the basics of deep learning applications in anomaly detection. 548 pp. Englisch. Bestandsnummer des Verkäufers 9798868800078

Verkäufer kontaktieren

Neu kaufen

EUR 58,84
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Sridhar Alla
Verlag: Apress, Apress Jan 2024, 2024
ISBN 13: 9798868800078
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning.Beginning Anomaly Detection Using Python-Based Deep Learning begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders, recurrent neural networks (via LSTM), temporal convolutional networks, and transformers, with the latter three architectures applied to time-series anomaly detection. This edition has a new chapter on GANs (Generative Adversarial Networks), as well as new material covering transformer architecture in the context of time-series anomaly detection.After completing this book, you will have a thorough understanding of anomaly detection as well as an assortment of methods to approach it in various contexts, including time-series data. Additionally, you will have gained an introduction to scikit-learn, GANs, transformers, Keras, and PyTorch, empowering you to create your own machine learning- or deep learning-based anomaly detectors.What You Will LearnUnderstand what anomaly detection is, why it it is important, and how it is appliedGrasp the core concepts of machine learning.Master traditional machine learning approaches to anomaly detection using scikit-kearn.Understand deep learning in Python using Keras and PyTorchProcess data through pandas and evaluate your model's performance using metrics like F1-score, precision, and recallApply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applicationsWho This Book Is ForData scientists and machine learning engineers of all levels of experience interested in learning the basics of deep learning applications in anomaly detection.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 548 pp. Englisch. Bestandsnummer des Verkäufers 9798868800078

Verkäufer kontaktieren

Neu kaufen

EUR 58,84
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Sridhar Alla
Verlag: Apress, Apress, 2024
ISBN 13: 9798868800078
Neu Taschenbuch
Print-on-Demand

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning.Beginning Anomaly Detection Using Python-Based Deep Learning begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders, recurrent neural networks (via LSTM), temporal convolutional networks, and transformers, with the latter three architectures applied to time-series anomaly detection. This edition has a new chapter on GANs (Generative Adversarial Networks), as well as new material covering transformer architecture in the context of time-series anomaly detection.After completing this book, you will have a thorough understanding of anomaly detection as well as an assortment of methods to approach it in various contexts, including time-series data. Additionally, you will have gained an introduction to scikit-learn, GANs, transformers, Keras, and PyTorch, empowering you to create your own machine learning- or deep learning-based anomaly detectors.What You Will LearnUnderstand what anomaly detection is, why it it is important, and how it is appliedGrasp the core concepts of machine learning.Master traditional machine learning approaches to anomaly detection using scikit-kearn.Understand deep learning in Python using Keras and PyTorchProcess data through pandas and evaluate your model's performance using metrics like F1-score, precision, and recallApply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applicationsWho This Book Is ForData scientists and machine learning engineers of all levels of experience interested in learning the basics of deep learning applications in anomaly detection. Bestandsnummer des Verkäufers 9798868800078

Verkäufer kontaktieren

Neu kaufen

EUR 59,00
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Adari, Suman Kalyan; Alla, Sridhar
Verlag: Apress, 2024
ISBN 13: 9798868800078
Gebraucht Softcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 46748383

Verkäufer kontaktieren

Gebraucht kaufen

EUR 48,85
Währung umrechnen
Versand: EUR 17,87
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Adari, Suman Kalyan; Alla, Sridhar
Verlag: Apress, 2024
ISBN 13: 9798868800078
Neu Softcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 46748383-n

Verkäufer kontaktieren

Neu kaufen

EUR 50,57
Währung umrechnen
Versand: EUR 17,87
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 5 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen