The present first volume begins with Hilbert's axioms from the \emph{Foundations of Geometry}.
After some discussion of logic and axioms in general, incidence geometries, especially the finite ones, and affine and projective geometry in two and three dimensions are treated. As in Hilbert's system, there follow sections about the axioms of order, and congruence in neutral geometry, the axioms of measurement and of completeness, and deviating from Hilbert, about circles.
The insight of independence of the parallel axiom leaves many open roads to pursue,
but the desire to develop a natural as well as completely axiomatic system remains. In this context, the classification of Hilbert planes into three types,---as semi-euclidean, semi-elliptic or semi-hyperbolic, known as the uniformity theorem is a important step beyond Euclid. A further step is the introduction of the axiom of the unbounded opening of an angle. In the spirit of Hilbert, a completely axiomatic theory of area in neutral geometry is set up, before branching into the cases of Euclidean, or semi-hyperbolic, or semi-elliptic geometry.
Finally, the attention has to focus of Euclidean geometry. The text gets a more educational and even more elementary flavor. Here I start with Thales theorem about the angle in a semicircle, and continue with Euclid's related theorems about angles in a circle.The most simple parts of the Euclidean geometry are given in detail, as well as the later parts about similarity, and area in Euclidean geometry with the theorem of Pythagoras and
trigonometry, and finally the measurement of the circle.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Franz Rothe has received his doctoral degree in mathematics from the university of T\"ubingen, Germany. He has been professor at the University of North Carolina at Charlotte, and has published about 40 articles and a lecture notes in mathematics, and two further books onnumber theory, modern algebra, and graph theory.Because of health reasons, Dr. Rothe is retired since several years, and is now emeritus professor.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,80 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerEUR 5,15 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9798887032498
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9798887032498
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 46022456-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 46022456
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The present first volume begins with Hilbert's axioms from the emph{Foundations of Geometry}.After some discussion of logic and axioms in general, incidence geometries, especially the finite ones, and affine and projective geometry in two and three dimensions are treated. As in Hilbert's system, there follow sections about the axioms of order, and congruence in neutral geometry, the axioms of measurement and of completeness, and deviating from Hilbert, about circles.The insight of independence of the parallel axiom leaves many open roads to pursuebut the desire to develop a natural as well as completely axiomatic system remains. In this context, the classification of Hilbert planes into three types,---as semi-euclidean, semi-elliptic or semi-hyperbolic, known as the uniformity theorem is a important step beyond Euclid. A further step is the introduction of the axiom of the unbounded opening of an angle. In the spirit of Hilbert, a completely axiomatic theory of area in neutral geometry is set up, before branching into the cases of Euclidean, or semi-hyperbolic, or semi-elliptic geometry.Finally, the attention has to focus of Euclidean geometry. The text gets a more educational and even more elementary flavor. Here I start with Thales theorem about the angle in a semicircle, and continue with Euclid's related theorems about angles in a circle.The most simple parts of the Euclidean geometry are given in detail, as well as the later parts about similarity, and area in Euclidean geometry with the theorem of Pythagoras andtrigonometry, and finally the measurement of the circle. Bestandsnummer des Verkäufers 9798887032498
Anzahl: 2 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 46022456
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 46022456-n
Anzahl: Mehr als 20 verfügbar