Verkäufer
Kennys Bookstore, Olney, MD, USA
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 9. Oktober 2009
2020. 1st Edition. Hardback. . . . . . Books ship from the US and Ireland. Bestandsnummer des Verkäufers V9781786305763
Data science unifies statistics, data analysis and machine learning to achieve a better understanding of the masses of data which are produced today, and to improve prediction. Special kinds of data (symbolic, network, complex, compositional) are increasingly frequent in data science. These data require specific methodologies, but there is a lack of reference work in this field.
Advances in Data Science fills this gap. It presents a collection of up-to-date contributions by eminent scholars following two international workshops held in Beijing and Paris. The 10 chapters are organized into four parts: Symbolic Data, Complex Data, Network Data and Clustering. They include fundamental contributions, as well as applications to several domains, including business and the social sciences.
Über die Autorin bzw. den Autor:
Edwin Diday is Emeritus Professor at Paris-Dauphine University-PSL. He helped to introduce the symbolic data analysis paradigm and the dynamic clustering method (opening the path to local models), as well as pyramidal clustering for spatial representation of overlapping clusters.
Rong Guan is Associate Professor at the School of Statistics and Mathematics, Central University of Finance and Economics, Beijing. Her research covers complex and symbolic data analysis and financial distress diagnosis.
Gilbert Saporta is Emeritus Professor at Conservatoire National des Arts et Métiers, France. His current research focuses on functional data analysis and clusterwise and sparse methods. He is Honorary President of the French Statistical Society.
Huiwen Wang is Professor at the School of Economics and Management, Beihang University, Beijing. Her research covers dimension reduction, PLS regression, symbolic data analysis, compositional data analysis, functional data analysis and statistical modeling methods for mixed data.
Titel: Advances in Data Science: Symbolic, Complex,...
Verlag: ISTE Ltd and John Wiley & Sons Inc
Erscheinungsdatum: 2020
Einband: Hardcover
Zustand: New
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 258 | Sprache: Englisch | Produktart: Bücher | Data science unifies statistics, data analysis and machine learning to achieve a better understanding of the masses of data which are produced today, and to improve prediction. Special kinds of data (symbolic, network, complex, compositional) are increasingly frequent in data science. These data require specific methodologies, but there is a lack of reference work in this field. Advances in Data Science fills this gap. It presents a collection of up-to-date contributions by eminent scholars following two international workshops held in Beijing and Paris. The 10 chapters are organized into four parts: Symbolic Data, Complex Data, Network Data and Clustering. They include fundamental contributions, as well as applications to several domains, including business and the social sciences. Bestandsnummer des Verkäufers 35969747/2
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Hervorragend. Zustand: Hervorragend | Seiten: 258 | Sprache: Englisch | Produktart: Bücher | Data science unifies statistics, data analysis and machine learning to achieve a better understanding of the masses of data which are produced today, and to improve prediction. Special kinds of data (symbolic, network, complex, compositional) are increasingly frequent in data science. These data require specific methodologies, but there is a lack of reference work in this field. Advances in Data Science fills this gap. It presents a collection of up-to-date contributions by eminent scholars following two international workshops held in Beijing and Paris. The 10 chapters are organized into four parts: Symbolic Data, Complex Data, Network Data and Clustering. They include fundamental contributions, as well as applications to several domains, including business and the social sciences. Bestandsnummer des Verkäufers 35969747/1
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 38712432-n
Anzahl: 8 verfügbar
Anbieter: INDOO, Avenel, NJ, USA
Zustand: New. Brand New. Bestandsnummer des Verkäufers 9781786305763
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 38712432-n
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers FW-9781786305763
Anzahl: 15 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 38712432
Anzahl: 8 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 38712432
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Über den AutorEdwin Diday is Emeritus Professor at Paris-Dauphine University-PSL. He helped to introduce the symbolic data analysis paradigm and the dynamic clustering method (opening the path to local models), as well as pyramid. Bestandsnummer des Verkäufers 339781705
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. Data science unifies statistics, data analysis and machine learning to achieve a better understanding of the masses of data which are produced today, and to improve prediction. Special kinds of data (symbolic, network, complex, compositional) are increasingly frequent in data science. These data require specific methodologies, but there is a lack of reference work in this field. Advances in Data Science fills this gap. It presents a collection of up-to-date contributions by eminent scholars following two international workshops held in Beijing and Paris. The 10 chapters are organized into four parts: Symbolic Data, Complex Data, Network Data and Clustering. They include fundamental contributions, as well as applications to several domains, including business and the social sciences. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781786305763