Verkäufer
Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 25. März 2015
In. Bestandsnummer des Verkäufers ria9780128222959_new
Advances in Subsurface Data Analytics: Traditional and Physics-Based Approaches brings together the fundamentals of popular and emerging machine learning (ML) algorithms with their applications in subsurface analysis, including geology, geophysics, petrophysics, and reservoir engineering. The book is divided into four parts: traditional ML, deep learning, physics-based ML, and new directions, with an increasing level of diversity and complexity of topics. Each chapter focuses on one ML algorithm with a detailed workflow for a specific application in geosciences. Some chapters also compare the results from an algorithm with others to better equip the readers with different strategies to implement automated workflows for subsurface analysis. Advances in Subsurface Data Analytics: Traditional and Physics-Based Approaches will help researchers in academia and professional geoscientists working on the subsurface-related problems (oil and gas, geothermal, carbon sequestration, and seismology) at different scales to understand and appreciate current trends in ML approaches, their applications, advances and limitations, and future potential in geosciences by bringing together several contributions in a single volume.
Über die Autorinnen und Autoren:
Dr. Shuvajit Bhattacharya is a research associate at the Bureau of Economic Geology, the University of Texas at Austin. He is an applied geophysicist/petrophysicist specializing in seismic interpretation, petrophysical modeling, machine learning, and integrated subsurface characterization. Prior to joining the Bureau of Economic Geology, Dr. Bhattacharya worked as an Assistant Professor at the University of Alaska Anchorage. He has completed several projects in the USA, Netherlands, Australia, South Africa, and India. He has published and presented more than 70 technical articles in journals, books, and conferences. His current research focuses on energy resources exploration, development, and subsurface storage of carbon and hydrogen. He completed his Ph.D. at West Virginia University in 2016.
Dr. Haibin Di is a Senior Data Scientist in the Digital Subsurface Intelligence team at Schlumberger. His research interest is in implementing machine learning algorithms, particularly deep neural networks, into multiple seismic applications, including stratigraphy interpretation, property estimation, denoising, and seismic-well tie. He has published more than 70 papers in seismic interpretation and holds seven patents on machine learning-assisted subsurface data analysis. Dr. Di received his Ph.D. in Geology from West Virginia University in 2016, worked as a postdoctoral researcher at Georgia Institute of Technology in 2016-2018, and joined Schlumberger in 2018.
Titel: Advances in Subsurface Data Analytics: ...
Verlag: Elsevier
Erscheinungsdatum: 2022
Einband: Softcover
Zustand: New
Anbieter: HPB-Red, Dallas, TX, USA
paperback. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Bestandsnummer des Verkäufers S_359068055
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 400 pages. 9.25x7.50x0.85 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __0128222956
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 376. Bestandsnummer des Verkäufers 394079481
Anzahl: 3 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 376. Bestandsnummer des Verkäufers 26386568998
Anzahl: 3 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 376. Bestandsnummer des Verkäufers 18386569004
Anzahl: 3 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 44021363-n
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 44021363-n
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Covers fundamentals of simple machine learning and deep learning algorithms, and physics-based approaches written by practitioners in academia and industry Presents detailed case studies of individual machine learning algorithms and optima. Bestandsnummer des Verkäufers 498363002
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 44021363
Anzahl: 2 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 44021363
Anzahl: 1 verfügbar