Verkäufer
More Than Words, Waltham, MA, USA
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 30. November 2010
. . All orders guaranteed and ship within 24 hours. Before placing your order for please contact us for confirmation on the book's binding. Check out our other listings to add to your order for discounted shipping. Bestandsnummer des Verkäufers WAL-Z-0b-01870
An excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra.
Titel: An Algebraic Introduction to Complex ...
Verlag: Cambridge University Press
Erscheinungsdatum: 1996
Einband: Hardcover
Zustand: Good
Anbieter: Labyrinth Books, Princeton, NJ, USA
Zustand: Good. Bestandsnummer des Verkäufers 068877
Anzahl: 3 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher | An excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra. Bestandsnummer des Verkäufers 1282724/202
Anzahl: 1 verfügbar
Anbieter: Mooney's bookstore, Den Helder, Niederlande
Zustand: Very good. Bestandsnummer des Verkäufers E-9780521480727-6-2
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2416190004428
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 230 pages. 9.50x6.25x0.75 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __0521480728
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This is an excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra. The route chosen takes the reader quickly to the fundamental concepts for understanding complex projective geometry, t. Bestandsnummer des Verkäufers 446937276
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 560. Bestandsnummer des Verkäufers C9780521480727
Anzahl: Mehr als 20 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Hardcover. Zustand: new. Hardcover. In this introduction to commutative algebra, the author leads the beginning student through the essential ideas, without getting embroiled in technicalities. The route chosen takes the reader quickly to the fundamental concepts for understanding complex projective geometry, the only prerequisites being a basic knowledge of linear and multilinear algebra and some elementary group theory. In the first part, the general theory of Noetherian rings and modules is developed. A certain amount of homological algebra is included, and rings and modules of fractions are emphasised, as preparation for working with sheaves. In the second part, the central objects are polynomial rings in several variables with coefficients in the field of complex numbers. After Noether's normalisation lemma and Hilbert's Nullstellensatz, affine complex schemes and their morphisms are introduced; Zariski's main theorem and Chevalley's semi-continuity theorem are then proved. Finally, a detailed study of Weil and Cartier divisors provides a solid background for modern intersection theory. This is an excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra. In this introduction to commutative algebra, the author choses a route that leads the reader through the essential ideas, without getting embroiled in technicalities. He takes the reader quickly to the fundamentals of complex projective geometry, requiring only a basic knowledge of linear and multilinear algebra and some elementary group theory. The author divides the book into three parts. In the first, he develops the general theory of noetherian rings and modules. He includes a certain amount of homological algebra, and he emphasizes rings and modules of fractions as preparation for working with sheaves. In the second part, he discusses polynomial rings in several variables with coefficients in the field of complex numbers. After Noether's normalization lemma and Hilbert's Nullstellensatz, the author introduces affine complex schemes and their morphisms; he then proves Zariski's main theorem and Chevalley's semi-continuity theorem. Finally, the author's detailed study of Weil and Cartier divisors provides a solid background for modern intersection theory. This is an excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9780521480727
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. An Algebraic Introduction to Complex Projective Geometry | Commutative Algebra | Christian Peskine (u. a.) | Buch | Gebunden | Englisch | 2007 | Cambridge University Press | EAN 9780521480727 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 101142141
Anzahl: 5 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. In this introduction to commutative algebra, the author leads the beginning student through the essential ideas, without getting embroiled in technicalities. The route chosen takes the reader quickly to the fundamental concepts for understanding complex projective geometry, the only prerequisites being a basic knowledge of linear and multilinear algebra and some elementary group theory. In the first part, the general theory of Noetherian rings and modules is developed. A certain amount of homological algebra is included, and rings and modules of fractions are emphasised, as preparation for working with sheaves. In the second part, the central objects are polynomial rings in several variables with coefficients in the field of complex numbers. After Noether's normalisation lemma and Hilbert's Nullstellensatz, affine complex schemes and their morphisms are introduced; Zariski's main theorem and Chevalley's semi-continuity theorem are then proved. Finally, a detailed study of Weil and Cartier divisors provides a solid background for modern intersection theory. This is an excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra. In this introduction to commutative algebra, the author choses a route that leads the reader through the essential ideas, without getting embroiled in technicalities. He takes the reader quickly to the fundamentals of complex projective geometry, requiring only a basic knowledge of linear and multilinear algebra and some elementary group theory. The author divides the book into three parts. In the first, he develops the general theory of noetherian rings and modules. He includes a certain amount of homological algebra, and he emphasizes rings and modules of fractions as preparation for working with sheaves. In the second part, he discusses polynomial rings in several variables with coefficients in the field of complex numbers. After Noether's normalization lemma and Hilbert's Nullstellensatz, the author introduces affine complex schemes and their morphisms; he then proves Zariski's main theorem and Chevalley's semi-continuity theorem. Finally, the author's detailed study of Weil and Cartier divisors provides a solid background for modern intersection theory. This is an excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9780521480727