Verkäufer
Lucky's Textbooks, Dallas, TX, USA
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 22. Juli 2022
Bestandsnummer des Verkäufers ABLIING23Mar2411530032931
Reinforcement learning is one of the more attractive machine learning technologies, due to its unsupervised learning structure and ability to continually learn even as the operating environment changes. Applying this learning to multiple cooperative software agents (a multi-agent system) not only allows each individual agent to learn from its own experience, but also opens up the opportunity for the individual agents to learn from the other agents in the system, thus accelerating the rate of learning. This research presents the novel use of fuzzy state aggregation, as the means of function approximation, combined with the fastest policy hill climbing methods of Win or Lose Fast (WoLF) and policy-dynamics based WoLF (PD-WoLF). The combination of fast policy hill climbing and fuzzy state aggregation function approximation is tested in two stochastic environments; Tileworld and the simulated robot soccer domain, RoboCup. The Tileworld results demonstrate that a single agent using the combination of FSA and PHC learns quicker and performs better than combined fuzzy state aggregation and Q-learning reinforcement learning alone. Results from the multi-agent RoboCup domain again illustrate that the policy hill climbing algorithms perform better than Q-learning alone in a multi-agent environment. The learning is further enhanced by allowing the agents to share their experience through a weighted strategy sharing.
Titel: Application of Fuzzy State Aggregation and ...
Verlag: Biblioscholar
Erscheinungsdatum: 2012
Einband: Softcover
Zustand: New
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781288408993_new
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781288408993
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781288408993
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781288408993
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. KlappentextrnrnReinforcement learning is one of the more attractive machine learning technologies, due to its unsupervised learning structure and ability to continually learn even as the operating environment changes. Applying this learning to m. Bestandsnummer des Verkäufers 6561706
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Bestandsnummer des Verkäufers C9781288408993
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Reinforcement learning is one of the more attractive machine learning technologies, due to its unsupervised learning structure and ability to continually learn even as the operating environment changes. Applying this learning to multiple cooperative software agents (a multi-agent system) not only allows each individual agent to learn from its own experience, but also opens up the opportunity for the individual agents to learn from the other agents in the system, thus accelerating the rate of learning. This research presents the novel use of fuzzy state aggregation, as the means of function approximation, combined with the fastest policy hill climbing methods of Win or Lose Fast (WoLF) and policy-dynamics based WoLF (PD-WoLF). The combination of fast policy hill climbing and fuzzy state aggregation function approximation is tested in two stochastic environments; Tileworld and the simulated robot soccer domain, RoboCup. The Tileworld results demonstrate that a single agent using the combination of FSA and PHC learns quicker and performs better than combined fuzzy state aggregation and Q-learning reinforcement learning alone. Results from the multi-agent RoboCup domain again illustrate that the policy hill climbing algorithms perform better than Q-learning alone in a multi-agent environment. The learning is further enhanced by allowing the agents to share their experience through a weighted strategy sharing. Bestandsnummer des Verkäufers 9781288408993
Anzahl: 2 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 82. Bestandsnummer des Verkäufers 26390606676
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 82. Bestandsnummer des Verkäufers 390041739
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 82. Bestandsnummer des Verkäufers 18390606686
Anzahl: 4 verfügbar