Applied Machine Learning Using mlr3 in R
Bernd Bischl
Verkauft von Rarewaves.com UK, London, Vereinigtes Königreich
AbeBooks-Verkäufer seit 11. Juni 2025
Neu - Softcover
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legenVerkauft von Rarewaves.com UK, London, Vereinigtes Königreich
AbeBooks-Verkäufer seit 11. Juni 2025
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legenmlr3 is an award-winning ecosystem of R packages that have been developed to enable state-of-the-art machine learning capabilities in R. Applied Machine Learning Using mlr3 in R gives an overview of flexible and robust machine learning methods, with an emphasis on how to implement them using mlr3 in R. It covers various key topics, including basic machine learning tasks, such as building and evaluating a predictive model; hyperparameter tuning of machine learning approaches to obtain peak performance; building machine learning pipelines that perform complex operations such as pre-processing followed by modelling followed by aggregation of predictions; and extending the mlr3 ecosystem with custom learners, measures, or pipeline components.Features:In-depth coverage of the mlr3 ecosystem for users and developersExplanation and illustration of basic and advanced machine learning conceptsReady to use code samples that can be adapted by the user for their applicationConvenient and expressive machine learning pipelining enabling advanced modellingCoverage of topics that are often ignored in other machine learning booksThe book is primarily aimed at researchers, practitioners, and graduate students who use machine learning or who are interested in using it. It can be used as a textbook for an introductory or advanced machine learning class that uses R, as a reference for people who work with machine learning methods, and in industry for exploratory experiments in machine learning.
Bestandsnummer des Verkäufers LU-9781032507545
Bernd Bischl is a professor of Statistical Learning and Data Science in LMU Munich and co-director of the Munich Center for Machine Learning. He studied Computer Science, Artificial Intelligence and Data Science and holds a PhD in statistics. His research interests include AutoML, model selection, interpretable ML and the development of statistical software. He wrote the initial version of mlr and still leads the mlr3 developers, now largely focusing on design, code review and strategic development.
Raphael Sonabend is a founder and director of OSPO Now and a visiting researcher at Imperial College London. They hold a PhD in statistics, specializing in machine learning applications for survival analysis. They wrote the mlr3 packages mlr3proba and mlr3benchmark.
Lars Kotthoff is an associate professor of Computer Science at the University of Wyoming, US. He has studied and held academic appointments in Germany, UK, Ireland, and Canada. Lars has been contributing to mlr for about a decade. His research aims to automate machine learning and other areas of AI.
Michel Lang is the scientific coordinator of the Research Center Trustworthy Data Science and Security. He has a PhD in statistics and has been developing statistical software for over a decade. He joined the mlr team in 2014 and wrote the initial version of mlr3.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Please note that we do not offer Priority shipping to any country.
We currently do not ship to the below countries:
Russia
Belarus
Ukraine
Israel
Please do not attempt to place orders with any of these countries as a ship to address - they will be cancelled.
| Bestellmenge | 60 bis 60 Werktage | 60 bis 60 Werktage |
|---|---|---|
| Erster Artikel | EUR 74.44 | EUR 114.53 |
Die Versandzeiten werden von den Verkäuferinnen und Verkäufern festgelegt. Sie variieren je nach Versanddienstleister und Standort. Sendungen, die den Zoll passieren, können Verzögerungen unterliegen. Eventuell anfallende Abgaben oder Gebühren sind von der Käuferin bzw. dem Käufer zu tragen. Die Verkäuferin bzw. der Verkäufer kann Sie bezüglich zusätzlicher Versandkosten kontaktieren, um einen möglichen Anstieg der Versandkosten für Ihre Artikel auszugleichen.