Backward Simulation Methods for Monte Carlo Statistical Inference
Fredrik Lindsten
Verkauft von AHA-BUCH GmbH, Einbeck, Deutschland
AbeBooks-Verkäufer seit 14. August 2006
Neu - Softcover
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legenVerkauft von AHA-BUCH GmbH, Einbeck, Deutschland
AbeBooks-Verkäufer seit 14. August 2006
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legennach der Bestellung gedruckt Neuware - Printed after ordering - Monte Carlo methods, in particular those based on Markov chains and on interacting particle systems, are by now tools that are routinely used in machine learning. These methods have had a profound impact on statistical inference in a wide range of application areas where probabilistic models are used. Moreover, there are many algorithms in machine learning that are based on the idea of processing the data sequentially; first in the forward direction, and then in the backward direction.Backward Simulation Methods for Monte Carlo Statistical Inference reviews a branch of Monte Carlo methods that are based on the forward-backward idea, and that are referred to as backward simulators. In recent years, the theory and practice of backward simulation algorithms have undergone a significant development, and the algorithms keep finding new applications. The foundation for these methods is sequential Monte Carlo (SMC). SMC-based backward simulators are capable of addressing smoothing problems in sequential latent variable models, such as general, nonlinear/non-Gaussian state-space models (SSMs). However, this book also clearly shows that the underlying backward simulation idea is by no means restricted to SSMs. Furthermore, backward simulation plays an important role in recent developments of Markov chain Monte Carlo (MCMC) methods. Particle MCMC is a systematic way of using SMC within MCMC. In this framework, backward simulation gives us a way to significantly improve the performance of the samplers. This monograph discusses several related backward-simulation-based methods for state inference as well as learning of static parameters, both using a frequentistic and a Bayesian approach.Backward Simulation Methods for Monte Carlo Statistical Inference is an excellent primer for anyone interested in this active research area.
Bestandsnummer des Verkäufers 9781601986986
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Allgemeine Geschäftsbedingungen und Kundeninformationen / Datenschutzerklärung
I. Allgemeine Geschäftsbedingungen
§ 1 Grundlegende Bestimmungen
(1) Die nachstehenden Geschäftsbedingungen gelten für alle Verträge, die Sie mit uns als Anbieter (AHA-BUCH GmbH) über die Internetplattformen AbeBooks und/oder ZVAB schließen. Soweit nicht anders vereinbart, wird der Einbeziehung gegebenenfalls von Ihnen verwendeter eigener Bedingungen widersprochen.
(2) Verbraucher im Sinne der nachstehenden Regelungen...
Mehr InformationWir liefern Lagerartikel innerhalb von 24 Stunden nach Erhalt der Bestellung aus.
Barsortimentsartikel, die wir über Nacht geliefert bekommen, am darauffolgenden Werktag.
Unser Ziel ist es Ihnen die Artikel in der ökonomischten und effizientesten Weise zu senden.