Bayesian Networks: With Examples in R (Chapman & Hall/CRC Texts in Statistical Science)

Denis, Jean-Baptiste,Scutari, Marco

ISBN 10: 1482225581 ISBN 13: 9781482225587
Verlag: Chapman and Hall/CRC, 2014
Gebraucht Hardcover

Verkäufer HPB-Red, Dallas, TX, USA Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 11. März 2019


Beschreibung

Beschreibung:

Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Bestandsnummer des Verkäufers S_420460017

Diesen Artikel melden

Inhaltsangabe:

Understand the Foundations of Bayesian Networks―Core Properties and Definitions Explained

Bayesian Networks: With Examples in R introduces Bayesian networks using a hands-on approach. Simple yet meaningful examples in R illustrate each step of the modeling process. The examples start from the simplest notions and gradually increase in complexity. The authors also distinguish the probabilistic models from their estimation with data sets.

The first three chapters explain the whole process of Bayesian network modeling, from structure learning to parameter learning to inference. These chapters cover discrete Bayesian, Gaussian Bayesian, and hybrid networks, including arbitrary random variables.

The book then gives a concise but rigorous treatment of the fundamentals of Bayesian networks and offers an introduction to causal Bayesian networks. It also presents an overview of R and other software packages appropriate for Bayesian networks. The final chapter evaluates two real-world examples: a landmark causal protein signaling network paper and graphical modeling approaches for predicting the composition of different body parts.

Suitable for graduate students and non-statisticians, this text provides an introductory overview of Bayesian networks. It gives readers a clear, practical understanding of the general approach and steps involved.

Über die Autorin bzw. den Autor:

Marco Scutari is a research associate in statistical genetics at the Genetics Institute, University College London (UCL). He studied statistics and computer science at the University of Padova. He is the author and maintainer of the bnlearn R package. His research focuses on the theory of Bayesian networks and their applications to biological data.

Jean-Baptiste Denis is a senior scientist in the Applied Mathematics and Computer Science Department at the French National Institute for Agricultural Research. His main research interests are Bayesian approaches to statistics and networks, especially applications to microbiological food safety.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Bayesian Networks: With Examples in R (...
Verlag: Chapman and Hall/CRC
Erscheinungsdatum: 2014
Einband: Hardcover
Zustand: Good

Beste Suchergebnisse bei AbeBooks

Beispielbild für diese ISBN

Scutari, Marco/ Denis, Jean-baptiste
Verlag: Chapman & Hall, 2014
ISBN 10: 1482225581 ISBN 13: 9781482225587
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 1st edition. 241 pages. 9.25x6.25x0.75 inches. In Stock. Bestandsnummer des Verkäufers 1482225581

Verkäufer kontaktieren

Neu kaufen

EUR 173,51
Währung umrechnen
Versand: EUR 11,57
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb