Bayesian Statistical Methods

Brian J. Reich (u. a.)

ISBN 10: 1032093188 ISBN 13: 9781032093185
Verlag: Chapman and Hall/CRC, 2021
Neu Taschenbuch

Verkäufer preigu, Osnabrück, Deutschland Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 5. August 2024


Beschreibung

Beschreibung:

Bayesian Statistical Methods | Brian J. Reich (u. a.) | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2021 | Chapman and Hall/CRC | EAN 9781032093185 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu. Bestandsnummer des Verkäufers 128438473

Diesen Artikel melden

Inhaltsangabe:

Designed to provide a good balance of theory and computational methods that will appeal to students and practitioners with minimal mathematical and statistical background and no experience in Bayesian statistics to students and practitioners looking for advanced methodologies.

Über die Autorin bzw. den Autor:

Brian J. Reich, Associate Professor of Statistics at North Carolina State University, is currently the editor-in-chief of the Journal of Agricultural, Biological, and Environmental Statistics and was awarded the LeRoy & Elva Martin Teaching Award.

Sujit K. Ghosh, Professor of Statistics at North Carolina State University, has over 22 years of research and teaching experience in conducting Bayesian analyses, received the Cavell Brownie mentoring award, and served as the Deputy Director at the Statistical and Applied Mathematical Sciences Institute

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Bayesian Statistical Methods
Verlag: Chapman and Hall/CRC
Erscheinungsdatum: 2021
Einband: Taschenbuch
Zustand: Neu

Beste Suchergebnisse bei AbeBooks

Beispielbild für diese ISBN

Reich, Brian J.; Ghosh, Sujit K.
Verlag: Routledge (edition 1), 2021
ISBN 10: 1032093188 ISBN 13: 9781032093185
Gebraucht Paperback

Anbieter: BooksRun, Philadelphia, PA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: As New. 1. It's a preowned item in almost perfect condition. It has no visible cosmetic imperfections. May come without any shrink wrap; pages are clean and not marred by notes or folds of any kind. Bestandsnummer des Verkäufers 1032093188-10-1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 43,75
Versand gratis
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Brian J. Reich (N.C. State University)|Sujit K. Ghosh
Verlag: CRC Press, 2021
ISBN 10: 1032093188 ISBN 13: 9781032093185
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Brian J. Reich, Associate Professor of Statistics at North Carolina State University, is currently the editor-in-chief of the Journal of Agricultural, Biological, and Environmental Statistics and was awarded the LeRoy &amp Elva M. Bestandsnummer des Verkäufers 487063467

Verkäufer kontaktieren

Neu kaufen

EUR 51,38
EUR 48,99 Versand
Versand von Deutschland nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Brian J. Reich
ISBN 10: 1032093188 ISBN 13: 9781032093185
Neu Paperback

Anbieter: Grand Eagle Retail, Bensenville, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. Bayesian Statistical Methods provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. This book focuses on Bayesian methods applied routinely in practice including multiple linear regression, mixed effects models and generalized linear models (GLM). The authors include many examples with complete R code and comparisons with analogous frequentist procedures.In addition to the basic concepts of Bayesian inferential methods, the book covers many general topics: Advice on selecting prior distributions Computational methods including Markov chain Monte Carlo (MCMC) Model-comparison and goodness-of-fit measures, including sensitivity to priors Frequentist properties of Bayesian methods Case studies covering advanced topics illustrate the flexibility of the Bayesian approach: Semiparametric regression Handling of missing data using predictive distributions Priors for high-dimensional regression models Computational techniques for large datasets Spatial data analysis The advanced topics are presented with sufficient conceptual depth that the reader will be able to carry out such analysis and argue the relative merits of Bayesian and classical methods. A repository of R code, motivating data sets, and complete data analyses are available on the books website.Brian J. Reich, Associate Professor of Statistics at North Carolina State University, is currently the editor-in-chief of the Journal of Agricultural, Biological, and Environmental Statistics and was awarded the LeRoy & Elva Martin Teaching Award.Sujit K. Ghosh, Professor of Statistics at North Carolina State University, has over 22 years of research and teaching experience in conducting Bayesian analyses, received the Cavell Brownie mentoring award, and served as the Deputy Director at the Statistical and Applied Mathematical Sciences Institute. Designed to provide a good balance of theory and computational methods that will appeal to students and practitioners with minimal mathematical and statistical background and no experience in Bayesian statistics to students and practitioners looking for advanced methodologies. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781032093185

Verkäufer kontaktieren

Neu kaufen

EUR 52,50
Versand gratis
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Brian J. Reich
ISBN 10: 1032093188 ISBN 13: 9781032093185
Neu Paperback

Anbieter: AussieBookSeller, Truganina, VIC, Australien

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. Bayesian Statistical Methods provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. This book focuses on Bayesian methods applied routinely in practice including multiple linear regression, mixed effects models and generalized linear models (GLM). The authors include many examples with complete R code and comparisons with analogous frequentist procedures.In addition to the basic concepts of Bayesian inferential methods, the book covers many general topics: Advice on selecting prior distributions Computational methods including Markov chain Monte Carlo (MCMC) Model-comparison and goodness-of-fit measures, including sensitivity to priors Frequentist properties of Bayesian methods Case studies covering advanced topics illustrate the flexibility of the Bayesian approach: Semiparametric regression Handling of missing data using predictive distributions Priors for high-dimensional regression models Computational techniques for large datasets Spatial data analysis The advanced topics are presented with sufficient conceptual depth that the reader will be able to carry out such analysis and argue the relative merits of Bayesian and classical methods. A repository of R code, motivating data sets, and complete data analyses are available on the books website.Brian J. Reich, Associate Professor of Statistics at North Carolina State University, is currently the editor-in-chief of the Journal of Agricultural, Biological, and Environmental Statistics and was awarded the LeRoy & Elva Martin Teaching Award.Sujit K. Ghosh, Professor of Statistics at North Carolina State University, has over 22 years of research and teaching experience in conducting Bayesian analyses, received the Cavell Brownie mentoring award, and served as the Deputy Director at the Statistical and Applied Mathematical Sciences Institute. Designed to provide a good balance of theory and computational methods that will appeal to students and practitioners with minimal mathematical and statistical background and no experience in Bayesian statistics to students and practitioners looking for advanced methodologies. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Bestandsnummer des Verkäufers 9781032093185

Verkäufer kontaktieren

Neu kaufen

EUR 64,26
EUR 31,16 Versand
Versand von Australien nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Internationale Ausgabe
Internationale Ausgabe

REICH B J
ISBN 10: 1032093188 ISBN 13: 9781032093185
Neu Softcover
Internationale Ausgabe

Anbieter: UK BOOKS STORE, London, LONDO, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Brand New! Fast Delivery "International Edition " and ship within 24-48 hours. Deliver by FedEx and Dhl, & Aramex, UPS, & USPS and we do accept APO and PO BOX Addresses. Order can be delivered worldwide within 4-6 Working days .and we do have flat rate for up to 2LB. Extra shipping charges will be requested This Item May be shipped from India, United states & United Kingdom. Depending on your location and availability. Bestandsnummer des Verkäufers CVSS 9781032093185

Verkäufer kontaktieren

Neu kaufen

EUR 94,58
Versand gratis
Versand von Vereinigtes Königreich nach USA

Anzahl: 1 verfügbar

In den Warenkorb