Causal Inference and Discovery in Python
Aleksander Molak
Verkauft von Rarewaves USA, OSWEGO, IL, USA
AbeBooks-Verkäufer seit 10. Juni 2025
Neu - Softcover
Zustand: New
Anzahl: Mehr als 20 verfügbar
In den Warenkorb legenVerkauft von Rarewaves USA, OSWEGO, IL, USA
AbeBooks-Verkäufer seit 10. Juni 2025
Zustand: New
Anzahl: Mehr als 20 verfügbar
In den Warenkorb legenCausal Inference and Discovery in Python is a comprehensive exploration of the theory and techniques at the intersection of modern causality and machine learning. It covers fundamental concepts of Pearlian causal inference, explains the theory, and provides step-by-step code examples for both traditional and advanced causal inference and discovery techniques.
Bestandsnummer des Verkäufers LU-9781804612989
Demystify causal inference and casual discovery by uncovering causal principles and merging them with powerful machine learning algorithms for observational and experimental data
Purchase of the print or Kindle book includes a free PDF eBook
Causal methods present unique challenges compared to traditional machine learning and statistics. Learning causality can be challenging, but it offers distinct advantages that elude a purely statistical mindset. Causal Inference and Discovery in Python helps you unlock the potential of causality.
You’ll start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian causal concepts, such as structural causal models, interventions, counterfactuals, and more. Each concept is accompanied by a theoretical explanation and a set of practical exercises with Python code.
Next, you’ll dive into the world of causal effect estimation, consistently progressing towards modern machine learning methods. Step-by-step, you’ll discover Python causal ecosystem and harness the power of cutting-edge algorithms. You’ll further explore the mechanics of how “causes leave traces” and compare the main families of causal discovery algorithms.
The final chapter gives you a broad outlook into the future of causal AI where we examine challenges and opportunities and provide you with a comprehensive list of resources to learn more.
This book is for machine learning engineers, data scientists, and machine learning researchers looking to extend their data science toolkit and explore causal machine learning. It will also help developers familiar with causality who have worked in another technology and want to switch to Python, and data scientists with a history of working with traditional causality who want to learn causal machine learning. It’s also a must-read for tech-savvy entrepreneurs looking to build a competitive edge for their products and go beyond the limitations of traditional machine learning.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Please note that we do not offer Priority shipping to any country.
We currently do not ship to the below countries:
Afghanistan
Bhutan
Brazil
Brunei Darussalam
Channel Islands
Chile
Israel
Lao
Mexico
Russian Federation
Saudi Arabia
South Africa
Yemen
Please do not attempt to place orders with any of these countries as a ship to address - they will be cancelled.