Complex-Valued Neural Networks with Multi-Valued Neurons (Studies in Computational Intelligence, 353)

Aizenberg, Igor

ISBN 10: 3662506319 ISBN 13: 9783662506318
Verlag: Springer, 2016
Neu Softcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9783662506318_new

Diesen Artikel melden

Inhaltsangabe:

Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts.

This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information.

These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories.

The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence.

Von der hinteren Coverseite:

Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts.

This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information.

These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories.

The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Complex-Valued Neural Networks with ...
Verlag: Springer
Erscheinungsdatum: 2016
Einband: Softcover
Zustand: New

Beste Suchergebnisse bei AbeBooks

Foto des Verkäufers

Igor Aizenberg
ISBN 10: 3662506319 ISBN 13: 9783662506318
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Cutting-edge research on Complex-Valued Networks with Multi-Valued NeuronsWritten by leading experts in this fieldState-of-the-Art bookComplex-Valued Neural Networks have higher functionality, learn faster and generalize b. Bestandsnummer des Verkäufers 385771721

Verkäufer kontaktieren

Neu kaufen

EUR 136,16
EUR 48,99 shipping
Versand von Deutschland nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Igor Aizenberg
Verlag: Springer, 2016
ISBN 10: 3662506319 ISBN 13: 9783662506318
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Complex-Valued Neural Networks with Multi-Valued Neurons | Igor Aizenberg | Taschenbuch | xv | Englisch | 2016 | Springer | EAN 9783662506318 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Bestandsnummer des Verkäufers 109582066

Verkäufer kontaktieren

Neu kaufen

EUR 141,30
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Aizenberg, Igor
Verlag: Springer, 2016
ISBN 10: 3662506319 ISBN 13: 9783662506318
Neu Softcover

Anbieter: Lucky's Textbooks, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020315616

Verkäufer kontaktieren

Neu kaufen

EUR 158,13
EUR 3,43 shipping
Versand innerhalb von USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Igor Aizenberg
ISBN 10: 3662506319 ISBN 13: 9783662506318
Neu Taschenbuch
Print-on-Demand

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts.This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information.These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories.The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 280 pp. Englisch. Bestandsnummer des Verkäufers 9783662506318

Verkäufer kontaktieren

Neu kaufen

EUR 160,49
EUR 60,00 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Igor Aizenberg
ISBN 10: 3662506319 ISBN 13: 9783662506318
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts.This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information.These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories. The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence. Bestandsnummer des Verkäufers 9783662506318

Verkäufer kontaktieren

Neu kaufen

EUR 160,49
EUR 62,15 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Igor Aizenberg
ISBN 10: 3662506319 ISBN 13: 9783662506318
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts.This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information.These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories. The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence. 280 pp. Englisch. Bestandsnummer des Verkäufers 9783662506318

Verkäufer kontaktieren

Neu kaufen

EUR 160,49
EUR 23,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Aizenberg, Igor
Verlag: Springer, 2016
ISBN 10: 3662506319 ISBN 13: 9783662506318
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9783662506318

Verkäufer kontaktieren

Neu kaufen

EUR 194,87
Versand gratis
Versand innerhalb von USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Aizenberg, Igor
Verlag: Springer, 2016
ISBN 10: 3662506319 ISBN 13: 9783662506318
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pp. 277 Softcover reprint of the original 1st ed. 2011 edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26378362886

Verkäufer kontaktieren

Neu kaufen

EUR 280,93
EUR 3,43 shipping
Versand innerhalb von USA

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Aizenberg, Igor
Verlag: Springer, 2016
ISBN 10: 3662506319 ISBN 13: 9783662506318
Neu Softcover
Print-on-Demand

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand pp. 277. Bestandsnummer des Verkäufers 385541081

Verkäufer kontaktieren

Neu kaufen

EUR 303,02
EUR 7,44 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Aizenberg, Igor
Verlag: Springer, 2016
ISBN 10: 3662506319 ISBN 13: 9783662506318
Neu Softcover
Print-on-Demand

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. PRINT ON DEMAND pp. 277. Bestandsnummer des Verkäufers 18378362892

Verkäufer kontaktieren

Neu kaufen

EUR 304,37
EUR 9,95 shipping
Versand von Deutschland nach USA

Anzahl: 4 verfügbar

In den Warenkorb