Data Science Using Python and R
Chantal D. Larose
Verkauft von Kennys Bookstore, Olney, MD, USA
AbeBooks-Verkäufer seit 9. Oktober 2009
Neu - Hardcover
Zustand: Neu
Anzahl: Mehr als 20 verfügbar
In den Warenkorb legenVerkauft von Kennys Bookstore, Olney, MD, USA
AbeBooks-Verkäufer seit 9. Oktober 2009
Zustand: Neu
Anzahl: Mehr als 20 verfügbar
In den Warenkorb legen2019. Hardcover. . . . . . Books ship from the US and Ireland.
Bestandsnummer des Verkäufers V9781119526810
Learn data science by doing data science!
Data Science Using Python and R will get you plugged into the world’s two most widespread open-source platforms for data science: Python and R.
Data science is hot. Bloomberg called data scientist “the hottest job in America.” Python and R are the top two open-source data science tools in the world. In Data Science Using Python and R, you will learn step-by-step how to produce hands-on solutions to real-world business problems, using state-of-the-art techniques.
Data Science Using Python and R is written for the general reader with no previous analytics or programming experience. An entire chapter is dedicated to learning the basics of Python and R. Then, each chapter presents step-by-step instructions and walkthroughs for solving data science problems using Python and R.
Those with analytics experience will appreciate having a one-stop shop for learning how to do data science using Python and R. Topics covered include data preparation, exploratory data analysis, preparing to model the data, decision trees, model evaluation, misclassification costs, naïve Bayes classification, neural networks, clustering, regression modeling, dimension reduction, and association rules mining.
Further, exciting new topics such as random forests and general linear models are also included. The book emphasizes data-driven error costs to enhance profitability, which avoids the common pitfalls that may cost a company millions of dollars.
Data Science Using Python and R provides exercises at the end of every chapter, totaling over 500 exercises in the book. Readers will therefore have plenty of opportunity to test their newfound data science skills and expertise. In the Hands-on Analysis exercises, readers are challenged to solve interesting business problems using real-world data sets.
CHANTAL D. LAROSE, PHD, is an Assistant Professor of Statistics & Data Science at Eastern Connecticut State University (ECSU). She has co-authored three books on data science and predictive analytics and helped develop data science programs at ECSU and SUNY New Paltz. Her PhD dissertation, Model-Based Clustering of Incomplete Data, tackles the persistent problem of trying to do data science with incomplete data.
DANIEL T. LAROSE, PHD, is a Professor of Data Science and Statistics and Director of the Data Science programs at Central Connecticut State University. He has published many books on data science, data mining, predictive analytics, and statistics. His consulting clients include The Economist magazine, Forbes Magazine, the CIT Group, and Microsoft.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
We guarantee the condition of every book as it's described on the Abebooks websites.
If you're dissatisfied with your purchase (Incorrect Book/Not as Described/Damaged) or if the order hasn't arrived, you're eligible for a refund within 30 days of the estimated delivery date.
For any queries please use the contact seller link or send an email to books@kennys.ie
Conor Kenny
All books securely packaged. Some books ship from Ireland.
Bestellmenge | 16 bis 22 Werktage | 14 bis 20 Werktage |
---|---|---|
Erster Artikel | EUR 1.88 | EUR 2.05 |
Die Versandzeiten werden von den Verkäuferinnen und Verkäufern festgelegt. Sie variieren je nach Versanddienstleister und Standort. Sendungen, die den Zoll passieren, können Verzögerungen unterliegen. Eventuell anfallende Abgaben oder Gebühren sind von der Käuferin bzw. dem Käufer zu tragen. Die Verkäuferin bzw. der Verkäufer kann Sie bezüglich zusätzlicher Versandkosten kontaktieren, um einen möglichen Anstieg der Versandkosten für Ihre Artikel auszugleichen.