Verkäufer
BargainBookStores, Grand Rapids, MI, USA
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 23. Januar 2002
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models. Bestandsnummer des Verkäufers BBS-9781800208582
Master reproducible ML and DL models with Python and PyTorch to achieve high performance, explainability, and real-world success
Key Features:
Book Description:
Debugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-performance models for industrial applications. Whether you're a data scientist, analyst, machine learning engineer, or Python developer, this book will empower you to design modular systems for data preparation, accurately train and test models, and seamlessly integrate them into larger technologies.
By bridging the gap between theory and practice, you'll learn how to evaluate model performance, identify and address issues, and harness recent advancements in deep learning and generative modeling using PyTorch and scikit-learn. Your journey to developing high quality models in practice will also encompass causal and human-in-the-loop modeling and machine learning explainability. With hands-on examples and clear explanations, you'll develop the skills to deliver impactful solutions across domains such as healthcare, finance, and e-commerce.
What You Will Learn:
Who this book is for:
This book is for data scientists, analysts, machine learning engineers, Python developers, and students looking to build reliable, high-performance, and explainable machine learning models for production across diverse industrial applications. Fundamental Python skills are all you need to dive into the concepts and practical examples covered. Whether you're new to machine learning or an experienced practitioner, this book offers a breadth of knowledge and practical insights to elevate your modeling skills.
Über die Autorin bzw. den Autor: Ali Madani worked as the director of machine learning at Cyclica Inc leading AI technology development front of Cyclica for drug discovery before acquisition of Cyclica by Recursion Pharmaceuticals. Ali completed his PhD at University of Toronto focusing on machine learning modeling in cancer setting and attained a Master of Mathematics from the University of Waterloo. As a believer in industry-oriented education and pro-democratization of knowledge, Ali has actively educated students and professionals through international workshops and courses on basic and advanced high-quality machine learning modeling. When not immersed in machine learning modeling and teaching, Ali enjoys exercising, cooking and traveling with his partner.
Titel: Debugging Machine Learning Models with ...
Verlag: Packt Publishing 9/15/2023
Erscheinungsdatum: 2023
Einband: Paperback or Softback
Zustand: New
Art des Buches: Book
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 46576028-n
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781800208582
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 46576028
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 46576028-n
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781800208582
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781800208582
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 46576028
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Bestandsnummer des Verkäufers C9781800208582
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Master reproducible ML and DL models with Python and PyTorch to achieve high performance, explainability, and real-world successKey Features:Learn how to improve performance of your models and eliminate model biasesStrategically design your machine learning systems to minimize chances of failure in productionDiscover advanced techniques to solve real-world challengesPurchase of the print or Kindle book includes a free PDF Elektronisches BuchBook Description:Debugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-performance models for industrial applications. Whether you're a data scientist, analyst, machine learning engineer, or Python developer, this book will empower you to design modular systems for data preparation, accurately train and test models, and seamlessly integrate them into larger technologies.By bridging the gap between theory and practice, you'll learn how to evaluate model performance, identify and address issues, and harness recent advancements in deep learning and generative modeling using PyTorch and scikit-learn. Your journey to developing high quality models in practice will also encompass causal and human-in-the-loop modeling and machine learning explainability. With hands-on examples and clear explanations, you'll develop the skills to deliver impactful solutions across domains such as healthcare, finance, and e-commerce.What You Will Learn:Enhance data quality and eliminate data flawsEffectively assess and improve the performance of your modelsDevelop and optimize deep learning models with PyTorchMitigate biases to ensure fairnessUnderstand explainability techniques to improve model qualitiesUse test-driven modeling for data processing and modeling improvementExplore techniques to bring reliable models to productionDiscover the benefits of causal and human-in-the-loop modelingWho this book is for:This book is for data scientists, analysts, machine learning engineers, Python developers, and students looking to build reliable, high-performance, and explainable machine learning models for production across diverse industrial applications. Fundamental Python skills are all you need to dive into the concepts and practical examples covered. Whether you're new to machine learning or an experienced practitioner, this book offers a breadth of knowledge and practical insights to elevate your modeling skills. Bestandsnummer des Verkäufers 9781800208582
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 344. Bestandsnummer des Verkäufers 26398186351
Anzahl: 4 verfügbar