Deep Learning with JAX
Grigory Sapunov
Verkauft von Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
AbeBooks-Verkäufer seit 11. Juni 2025
Neu - Hardcover
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legenVerkauft von Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
AbeBooks-Verkäufer seit 11. Juni 2025
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legenAccelerate deep learning and other number-intensive tasks with JAX, Google's awesome high-performance numerical computing library.In Deep Learning with JAX you will learn how to: Use JAX for numerical calculationsBuild differentiable models with JAX primitivesRun distributed and parallelized computations with JAXUse high-level neural network libraries such as Flax and HaikuLeverage libraries and modules from the JAX ecosystem The JAX numerical computing library tackles the core performance challenges at the heart of deep learning and other scientific computing tasks. By combining Google's Accelerated Linear Algebra platform (XLA) with a hyper-optimized version of NumPy and a variety of other high-performance features, JAX delivers a huge performance boost in low-level computations and transformations.Deep Learning with JAX is a hands-on guide to using JAX for deep learning and other mathematically-intensive applications. Google Developer Expert Grigory Sapunov steadily builds your understanding of JAX's concepts. The engaging examples introduce the fundamental concepts on which JAX relies and then show you how to apply them to real-world tasks. You'll learn how to use JAX's ecosystem of high-level libraries and modules, and also how to combine TensorFlow and PyTorch with JAX for data loading and deployment.
Bestandsnummer des Verkäufers LU-9781633438880
Accelerate deep learning and other number-intensive tasks with JAX, Google’s awesome high-performance numerical computing library.
In Deep Learning with JAX you will learn how to:
The JAX numerical computing library tackles the core performance challenges at the heart of deep learning and other scientific computing tasks. By combining Google’s Accelerated Linear Algebra platform (XLA) with a hyper-optimized version of NumPy and a variety of other high-performance features, JAX delivers a huge performance boost in low-level computations and transformations.
Deep Learning with JAX is a hands-on guide to using JAX for deep learning and other mathematically-intensive applications. Google Developer Expert Grigory Sapunov steadily builds your understanding of JAX’s concepts. The engaging examples introduce the fundamental concepts on which JAX relies and then show you how to apply them to real-world tasks. You’ll learn how to use JAX’s ecosystem of high-level libraries and modules, and also how to combine TensorFlow and PyTorch with JAX for data loading and deployment.
Grigory Sapunov is a co-founder and CTO of Intento. He is a software engineer with more than twenty years of experience. Grigory holds a Ph.D. in artificial intelligence and is a Google Developer Expert in Machine Learning.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Please note that we do not offer Priority shipping to any country.
We currently do not ship to the below countries:
Russia
Belarus
Ukraine
Israel
Please do not attempt to place orders with any of these countries as a ship to address - they will be cancelled.
Bestellmenge | 6 bis 12 Werktage | 6 bis 12 Werktage |
---|---|---|
Erster Artikel | EUR 2.30 | EUR 2.30 |
Die Versandzeiten werden von den Verkäuferinnen und Verkäufern festgelegt. Sie variieren je nach Versanddienstleister und Standort. Sendungen, die den Zoll passieren, können Verzögerungen unterliegen. Eventuell anfallende Abgaben oder Gebühren sind von der Käuferin bzw. dem Käufer zu tragen. Die Verkäuferin bzw. der Verkäufer kann Sie bezüglich zusätzlicher Versandkosten kontaktieren, um einen möglichen Anstieg der Versandkosten für Ihre Artikel auszugleichen.