Derivative-Free Optimization: Theoretical Foundations, Algorithms, and Applications (Machine Learning: Foundations, Methodologies, and Applications)

Yu, Yang; Qian, Hong; Hu, Yi-Qi

ISBN 10: 9819659280 ISBN 13: 9789819659289
Verlag: Springer, 2025
Neu Hardcover

Verkäufer Best Price, Torrance, CA, USA Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 30. August 2024


Beschreibung

Beschreibung:

SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9789819659289

Diesen Artikel melden

Inhaltsangabe:

mso-fareast-font-family: 'Times New Roman';">Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities.

Über die Autorin bzw. den Autor:

Yang Yu is a professor at Nanjing University, specializing in artificial intelligence, machine learning, and optimization. His research focuses on derivative-free optimization, AutoML, and reinforcement learning. Prof. Yu has an extensive publication record in leading journals and conferences, including Artificial Intelligence, IEEE Transactions on Pattern Analysis and Machine Intelligence, ICML, NeurIPS, IJCAI, and AAAI. He is a co-author of the book Evolutionary Learning: Advances in Theories and Algorithms (Springer, 2019). His work has introduced foundational frameworks and algorithms in classification-based optimization, notably Racos and SRacos, and contributed to the development of the optimization toolbox ZOOpt, widely utilized in academic and industrial research.

Hong Qian is an associate professor at East China Normal University, with expertise in optimization algorithms, machine learning, and computational intelligence. His research focuses on developing scalable derivative-free optimization techniques for high-dimensional problems with theoretical guarantees, and LLM for optimization. Dr. Qian has published extensively in prominent venues such as ICML, NeurIPS, AAAI, and IEEE Transactions on Evolutionary Computation and has contributed to advancements in sampling-and-classification frameworks and their applications in machine learning and optimization tasks.

Yi-Qi Hu is an AI technical expert in Huawei Co. Ltd., with expertise in machine learning, optimization algorithms, and large language model on device. His work focuses on developing machine learning systems utilizing derivative-free optimization techniques. Dr. Hu has published extensively in prominent venues such as AAAI and IJCAI and has contributed to advancements in derivative-free optimization-based AutoML systems.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Derivative-Free Optimization: Theoretical ...
Verlag: Springer
Erscheinungsdatum: 2025
Einband: Hardcover
Zustand: New

Beste Suchergebnisse bei AbeBooks

Beispielbild für diese ISBN

Yu, Yang
Verlag: Springer, 2025
ISBN 10: 9819659280 ISBN 13: 9789819659289
Neu Hardcover
Print-on-Demand

Anbieter: Brook Bookstore On Demand, Napoli, NA, Italien

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: new. Questo è un articolo print on demand. Bestandsnummer des Verkäufers OWS5EKFRF4

Verkäufer kontaktieren

Neu kaufen

EUR 126,26
Versand: EUR 5,50
Von Italien nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Yang Yu (u. a.)
Verlag: Springer Singapore, 2025
ISBN 10: 9819659280 ISBN 13: 9789819659289
Neu Hardcover
Print-on-Demand

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Derivative-Free Optimization | Theoretical Foundations, Algorithms, and Applications | Yang Yu (u. a.) | Buch | xv | Englisch | 2025 | Springer Singapore | EAN 9789819659289 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 133612318

Verkäufer kontaktieren

Neu kaufen

EUR 141,30
Versand: EUR 70,00
Von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Yang Yu
ISBN 10: 9819659280 ISBN 13: 9789819659289
Neu Hardcover

Anbieter: AussieBookSeller, Truganina, VIC, Australien

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: new. Hardcover. This book offers a pioneering exploration of classification-based derivative-free optimization (DFO), providing researchers and professionals in artificial intelligence, machine learning, AutoML, and optimization with a robust framework for addressing complex, large-scale problems where gradients are unavailable. By bridging theoretical foundations with practical implementations, it fills critical gaps in the field, making it an indispensable resource for both academic and industrial audiences.The book introduces innovative frameworks such as sampling-and-classification (SAC) and sampling-and-learning (SAL), which underpin cutting-edge algorithms like Racos and SRacos. These methods are designed to excel in challenging optimization scenarios, including high-dimensional search spaces, noisy environments, and parallel computing. A dedicated section on the ZOOpt toolbox provides practical tools for implementing these algorithms effectively. The books structure moves from foundational principles and algorithmic development to advanced topics and real-world applications, such as hyperparameter tuning, neural architecture search, and algorithm selection in AutoML.Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. A foundational understanding of machine learning, probability theory, and algorithms is recommended for readers to fully engage with the material. mso-fareast-font-family: 'Times New Roman';">Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Bestandsnummer des Verkäufers 9789819659289

Verkäufer kontaktieren

Neu kaufen

EUR 144,24
Versand: EUR 32,06
Von Australien nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Yang Yu
ISBN 10: 9819659280 ISBN 13: 9789819659289
Neu Hardcover
Print-on-Demand

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 212 pp. Englisch. Bestandsnummer des Verkäufers 9789819659289

Verkäufer kontaktieren

Neu kaufen

EUR 160,49
Versand: EUR 60,00
Von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Yang Yu
ISBN 10: 9819659280 ISBN 13: 9789819659289
Neu Hardcover
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book offers a pioneering exploration of classification-based derivative-free optimization (DFO), providing researchers and professionals in artificial intelligence, machine learning, AutoML, and optimization with a robust framework for addressing complex, large-scale problems where gradients are unavailable. By bridging theoretical foundations with practical implementations, it fills critical gaps in the field, making it an indispensable resource for both academic and industrial audiences.The book introduces innovative frameworks such as sampling-and-classification (SAC) and sampling-and-learning (SAL), which underpin cutting-edge algorithms like Racos and SRacos. These methods are designed to excel in challenging optimization scenarios, including high-dimensional search spaces, noisy environments, and parallel computing. A dedicated section on the ZOOpt toolbox provides practical tools for implementing these algorithms effectively. The book s structure moves from foundational principles and algorithmic development to advanced topics and real-world applications, such as hyperparameter tuning, neural architecture search, and algorithm selection in AutoML.Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. A foundational understanding of machine learning, probability theory, and algorithms is recommended for readers to fully engage with the material. 212 pp. Englisch. Bestandsnummer des Verkäufers 9789819659289

Verkäufer kontaktieren

Neu kaufen

EUR 160,49
Versand: EUR 23,00
Von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Yang Yu
ISBN 10: 9819659280 ISBN 13: 9789819659289
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book offers a pioneering exploration of classification-based derivative-free optimization (DFO), providing researchers and professionals in artificial intelligence, machine learning, AutoML, and optimization with a robust framework for addressing complex, large-scale problems where gradients are unavailable. By bridging theoretical foundations with practical implementations, it fills critical gaps in the field, making it an indispensable resource for both academic and industrial audiences.The book introduces innovative frameworks such as sampling-and-classification (SAC) and sampling-and-learning (SAL), which underpin cutting-edge algorithms like Racos and SRacos. These methods are designed to excel in challenging optimization scenarios, including high-dimensional search spaces, noisy environments, and parallel computing. A dedicated section on the ZOOpt toolbox provides practical tools for implementing these algorithms effectively. The book s structure moves from foundational principles and algorithmic development to advanced topics and real-world applications, such as hyperparameter tuning, neural architecture search, and algorithm selection in AutoML.Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. A foundational understanding of machine learning, probability theory, and algorithms is recommended for readers to fully engage with the material. Bestandsnummer des Verkäufers 9789819659289

Verkäufer kontaktieren

Neu kaufen

EUR 166,62
Versand: EUR 62,44
Von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Yang Yu
ISBN 10: 9819659280 ISBN 13: 9789819659289
Neu Hardcover
Print-on-Demand

Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: new. Hardcover. This book offers a pioneering exploration of classification-based derivative-free optimization (DFO), providing researchers and professionals in artificial intelligence, machine learning, AutoML, and optimization with a robust framework for addressing complex, large-scale problems where gradients are unavailable. By bridging theoretical foundations with practical implementations, it fills critical gaps in the field, making it an indispensable resource for both academic and industrial audiences.The book introduces innovative frameworks such as sampling-and-classification (SAC) and sampling-and-learning (SAL), which underpin cutting-edge algorithms like Racos and SRacos. These methods are designed to excel in challenging optimization scenarios, including high-dimensional search spaces, noisy environments, and parallel computing. A dedicated section on the ZOOpt toolbox provides practical tools for implementing these algorithms effectively. The books structure moves from foundational principles and algorithmic development to advanced topics and real-world applications, such as hyperparameter tuning, neural architecture search, and algorithm selection in AutoML.Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. A foundational understanding of machine learning, probability theory, and algorithms is recommended for readers to fully engage with the material. mso-fareast-font-family: 'Times New Roman';">Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9789819659289

Verkäufer kontaktieren

Neu kaufen

EUR 171,93
Versand: EUR 41,88
Von Vereinigtes Königreich nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Yang Yu
ISBN 10: 9819659280 ISBN 13: 9789819659289
Neu Hardcover

Anbieter: Grand Eagle Retail, Bensenville, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: new. Hardcover. This book offers a pioneering exploration of classification-based derivative-free optimization (DFO), providing researchers and professionals in artificial intelligence, machine learning, AutoML, and optimization with a robust framework for addressing complex, large-scale problems where gradients are unavailable. By bridging theoretical foundations with practical implementations, it fills critical gaps in the field, making it an indispensable resource for both academic and industrial audiences.The book introduces innovative frameworks such as sampling-and-classification (SAC) and sampling-and-learning (SAL), which underpin cutting-edge algorithms like Racos and SRacos. These methods are designed to excel in challenging optimization scenarios, including high-dimensional search spaces, noisy environments, and parallel computing. A dedicated section on the ZOOpt toolbox provides practical tools for implementing these algorithms effectively. The books structure moves from foundational principles and algorithmic development to advanced topics and real-world applications, such as hyperparameter tuning, neural architecture search, and algorithm selection in AutoML.Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. A foundational understanding of machine learning, probability theory, and algorithms is recommended for readers to fully engage with the material. mso-fareast-font-family: 'Times New Roman';">Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9789819659289

Verkäufer kontaktieren

Neu kaufen

EUR 193,98
Versand: Gratis
Innerhalb der USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Yu, Yang; Qian, Hong; Hu, Yi-Qi
Verlag: Springer, 2025
ISBN 10: 9819659280 ISBN 13: 9789819659289
Neu Hardcover
Print-on-Demand

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18403830116

Verkäufer kontaktieren

Neu kaufen

EUR 248,01
Versand: EUR 9,95
Von Deutschland nach USA

Anzahl: 4 verfügbar

In den Warenkorb