Designing Machine Learning Systems
Chip Huyen
Verkauft von Rarewaves USA United, OSWEGO, IL, USA
AbeBooks-Verkäufer seit 20. Juni 2025
Neu - Softcover
Zustand: Neu
Anzahl: Mehr als 20 verfügbar
In den Warenkorb legenVerkauft von Rarewaves USA United, OSWEGO, IL, USA
AbeBooks-Verkäufer seit 20. Juni 2025
Zustand: Neu
Anzahl: Mehr als 20 verfügbar
In den Warenkorb legenMachine learning systems are both complex and unique. Complex because they consist of many different components and involve many different stakeholders. Unique because they're data dependent, with data varying wildly from one use case to the next. In this book, you'll learn a holistic approach to designing ML systems that are reliable, scalable, maintainable, and adaptive to changing environments and business requirements.Author Chip Huyen, co-founder of Claypot AI, considers each design decision--such as how to process and create training data, which features to use, how often to retrain models, and what to monitor--in the context of how it can help your system as a whole achieve its objectives. The iterative framework in this book uses actual case studies backed by ample references.This book will help you tackle scenarios such as:Engineering data and choosing the right metrics to solve a business problemAutomating the process for continually developing, evaluating, deploying, and updating modelsDeveloping a monitoring system to quickly detect and address issues your models might encounter in productionArchitecting an ML platform that serves across use casesDeveloping responsible ML systems.
Bestandsnummer des Verkäufers LU-9781098107963
Machine learning systems are both complex and unique. Complex because they consist of many different components and involve many different stakeholders. Unique because they're data dependent, with data varying wildly from one use case to the next. In this book, you'll learn a holistic approach to designing ML systems that are reliable, scalable, maintainable, and adaptive to changing environments and business requirements.
Author Chip Huyen, co-founder of Claypot AI, considers each design decision--such as how to process and create training data, which features to use, how often to retrain models, and what to monitor--in the context of how it can help your system as a whole achieve its objectives. The iterative framework in this book uses actual case studies backed by ample references.
This book will help you tackle scenarios such as:
Chip Huyen (https://huyenchip.com) is a co-founder of Claypot AI, a platform for real-time machine learning. Through her work at NVIDIA, Netflix, and Snorkel AI, she has helped some of the world's largest organizations develop and deploy machine learning systems. She teaches CS 329S: Machine Learning Systems Design at Stanford, whose lecture notes this book is based on.
LinkedIn included her among Top Voices in Software Development (2019) and Top Voices in Data Science & AI (2020). She is also the author of four bestselling Vietnamese books, including the series Xach ba lo len va Di (Pack Your Bag and Go). She also runs a Discord server on MLOps with over 6,000 members (https://discord.com/invite/Mw77HPrgjF).
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Please note that we do not offer Priority shipping to any country.
We currently do not ship to the below countries:
Afghanistan
Bhutan
Brazil
Brunei Darussalam
Channel Islands
Chile
Israel
Lao
Mexico
Russian Federation
Saudi Arabia
South Africa
Yemen
Please do not attempt to place orders with any of these countries as a ship to address - they will be cancelled.