Disquisitiones arithmeticae.: GAUSS, Karl Friedrich Disquisitiones arithmeticae.: GAUSS, Karl Friedrich

Disquisitiones arithmeticae.

GAUSS, Karl Friedrich

Verlag: Leipzig, G. Fleischer, 1801, 1801
Gebraucht
Verkäufer WP Watson Antiquarian Books (London, Vereinigtes Königreich)

AbeBooks Verkäufer seit 26. Juni 2012

Verkäuferbewertung 4 Sterne

Anzahl: 1

Gebraucht kaufen
Preis: EUR 55.282,27 Währung umrechnen
Versand: EUR 22,02 Von Vereinigtes Königreich nach USA Versandziele, Kosten & Dauer
In den Warenkorb legen

Beschreibung

8vo (220 x 135 mm), pp [i-v] vi-xviii 668 [8, errata]; B7, G4, K3, Ff7 and Tt6 are cancels as usual; a few gatherings with some light foxing, mostly marginal, as usual; title and preliminary leaves a little more, faint dampstain to lower margins of the final few gatherings, a remarkably fine, fresh, large, entirely uncut and partially unopened copy in contemporary marbled calf-backed blue speckled boards, red morocco label.First edition, a fine uncut copy, of the work that 'begins a new epoch in mathematics' (PMM). Published when Gauss was just twenty-four, Disquisitiones arithmeticae revolutionised number theory. It is one of the most influential mathematical books ever published.In this work Gauss 'introduces, among other things, the concept of congruence, whereby a set of elements is separated into disjoint classes by means of an equivalence relation. Gauss develops the congruence concept in the book's first sections and then uses it to unify and extend the work of his predecessors on arithmetical divisibility and to create a coherent theory of quadratic forms, including a proof of the law of quadratic reciprocity, called by Gauss the theorema aureum or "gem of arithmetic." He also generalizes his earlier work on constructing the regular polygon of 17 sides, presenting a universal criterion for determining which regular n-sided polygons can be constructed only with straight-edge and compass and which cannot. Finally, he includes a rigorous proof of the long-known Fundamental Theorem of Arithmetic that any positive integer can be uniquely (except for order) expressed as a product of primes' (Parkinson Breakthroughs).Provenance: 8 contemporary folded manuscript inserts of detailed mathematical calculations in Latin and Spanish (for pages 44, 56, 58, 59, 60, 64, 65, and 78)Dibner 114; Evans 11; Horblit 38; Norman 878; Parkinson p 238; PMM 257. Buchnummer des Verkäufers 3971

Dem Anbieter eine Frage stellen

Bibliografische Details

Titel: Disquisitiones arithmeticae.

Verlag: Leipzig, G. Fleischer, 1801

Erscheinungsdatum: 1801

Anbieterinformationen

by appointment only

Zur Homepage des Verkäufers

Geschäftsbedingungen:

All items are complete and in good condition, unless otherwise stated. All items are offered
subject to prior sale. Prices are nett £ sterling. Postage and insurance are not included.

Versandinformationen:

Shipping & insurance costs are extra.

Alle Bücher des Anbieters anzeigen

Zahlungsarten
akzeptiert von diesem Verkäufer

Visa Mastercard American Express Carte Bleue

Vorauskasse Bankwechsel Banküberweisung