Efficient Processing of Deep Neural Networks

0

ISBN 10: 3031006380 ISBN 13: 9783031006388
Verlag: Springer, 2020
Neu Softcover

Verkäufer Basi6 International, Irving, TX, USA Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 24. Juni 2016


Beschreibung

Beschreibung:

New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-13926

Diesen Artikel melden

Inhaltsangabe:

This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems.

The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.

Über die Autorin bzw. den Autor: Vivienne Sze received the B.A.Sc. (Hons.) degree in electrical engineering from the University of Toronto, Toronto, ON, Canada, in 2004, and the S.M. and Ph.D. degrees in electrical engineering from the Massachusetts Institute of Technology (MIT), Cambridge, MA, in 2006 and 2010, respectively. In 2011, she received the Jin-Au Kong Outstanding Doctoral Thesis Prize in Electrical Engineering at MIT. She is an Associate Professor at MIT in the Electrical Engineering and Computer Science Department. Her research interests include energy-aware signal processing algorithms and low-power circuit and system design for portable multimedia applications, including computer vision, deep learning, autonomous navigation, image processing, and video compression. Prior to joining MIT, she was a Member of the Technical Staff in the Systems and Applications R&D Center at Texas Instruments (TI), Dallas, TX, where she designed low-power algorithms and architectures for video coding. She also represented TI in the JCT-VC committee of ITU-T and ISO/IEC standards body during the development of High Efficiency Video Coding (HEVC), which received a Primetime Engineering Emmy Award. Within the committee, she was the primary coordinator of the core experiment on coefficient scanning and coding, and she chaired/vice-chaired several ad hoc groups on entropy coding. She is a co-editor of High Efficiency Video Coding (HEVC): Algorithms and Architectures (Springer, 2014). Prof. Sze is a recipient of the inaugural ACM-W Rising Star Award, the 2019 Edgerton Faculty Achievement Award at MIT, the 2018 Facebook Faculty Award, the 2018 & 2017 Qualcomm Faculty Award, the 2018 & 2016 Google Faculty Research Award, the 2016 AFOSR Young Investigator Research Program (YIP) Award, the 2016 3M Non-Tenured Faculty Award, the 2014 DARPA Young Faculty Award, and the 2007 DAC/ISSCC Student Design Contest Award; and she is a co-recipient of the 2018 VLSI Best Student Paper Award, the 2017 CICC Outstanding Invited Paper Award, the 2016 IEEE Micro Top Picks Award, and the 2008 A-SSCC Outstanding Design Award. She currently serves on the technical program committee for the International Solid-State Circuits Conference (ISSCC) and the SSCS Advisory Committee (AdCom). She has served on the technical program committees for VLSI Circuits Symposium, Micro, and the Conference on Machine Learning and Systems (MLSys); as a guest editor for the IEEE Transactions on Circuits and Systems for Video Technology (TCSVT); and as a Distinguished Lecturer for the IEEE Solid-State Circuits Society (SSCS). Prof. Sze was the Systems Program Chair of MLSys in 2020.
Tien-Ju Yang received the B. S. degree in electrical engineering from National Taiwan University (NTU), Taipei, Taiwan, in 2010, and the M. S. degree in electronics engineering from NTU in 2012. Between 2012 and 2015, he worked as an engineer in the Intelligent Vision Processing Group, MediaTek Inc., Hsinchu, Taiwan. He is currently a Ph.D.candidate in Electrical Engineering and Computer Science at Massachusetts Institute of Technology, Cambridge, MA, working on energy-efficient deep neural network design. His research interests span the areas of computer vision, machine learning, image/video processing, and VLSI system design. He won first place in the 2011 National Taiwan University Innovation Contest and co-taught a tutorial on “Efficient Image Processing with Deep Neural Networks” at ICIP2019.Joel S. Emer received the B.S. (Hons.) and M.S. degrees in electrical engineering from Purdue University, West Lafayette, IN, USA, in 1974 and 1975, respectively, and the Ph.D. degree in electrical engineering from the University of Illinois at Urbana-Champaign, Champaign, IL, USA, in 1979. He is currently a Senior Distinguished Research Scientist with Nvidia’s Architecture Research Group, Westford, MA, USA, where he is responsible for exploration of future architectures and modeling and analysis methodologies. He isalso a Professor of the Practice at the Massachusetts Institute of Technology, Cambridge, MA, USA. Previously he was with Intel, where he was an Intel Fellow and the Director of Microarchitecture Research. At Intel, he led the VSSAD Group, which he had previously been a member of at Compaq and the Digital Equipment Corporation. Over his career, he has held various research and advanced development positions investigating processor micro-architecture and developing performance modeling and evaluation techniques. He has made architectural contributions to a number of VAX, Alpha, and X86 processors and is recognized as one of the developers of the widely employed quantitative approach to processor performance evaluation. He has been recognized for his contributions in the advancement of simultaneous multithreading technology, processor reliability analysis, cache organization, pipelined processor organization, and spatial architectures for deep learning. Dr. Emer is a Fellow of the ACM and IEEE and a member of the NAE. He has been a recipient of numerous public recognitions. In 2009, he received the Eckert-Mauchly Award for lifetime contributions in computer architecture. He received the Purdue University Outstanding Electrical and Computer Engineer Alumni Award and the University of Illinois Electrical and Computer Engineering Distinguished Alumni Award in 2010 and 2011, respectively. His 1996 paper on simultaneous multithreading received the ACM/SIGARCHIEEE-CS/TCCA Most Influential Paper Award in 2011. He was named to the International Symposium on Computer Architecture (ISCA) and International Symposium on Microarchitecture (MICRO) Halls of Fame in 2005 and 2015, respectively. He has had six papers selected for the IEEE Micro’s Top Picks in Computer Architecture in 2003, 2004, 2007, 2013, 2015, and 2016. He was the Program Chair of ISCA in 2000 and MICRO in 2017.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Efficient Processing of Deep Neural Networks
Verlag: Springer
Erscheinungsdatum: 2020
Einband: Softcover
Zustand: Brand New

Beste Suchergebnisse bei AbeBooks

Beispielbild für diese ISBN

Sze, Vivienne,Chen, Yu-Hsin,Yang, Tien-Ju,Emer, Joel S.
Verlag: Springer, 2020
ISBN 10: 3031006380 ISBN 13: 9783031006388
Gebraucht paperback

Anbieter: Books From California, Simi Valley, CA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

paperback. Zustand: Very Good. Bestandsnummer des Verkäufers mon0003945583

Verkäufer kontaktieren

Gebraucht kaufen

EUR 47,05
EUR 4,24 shipping
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Sze, Vivienne; Chen, Yu-Hsin; Yang, Tien-Ju
Verlag: Springer, 2020
ISBN 10: 3031006380 ISBN 13: 9783031006388
Gebraucht Paperback

Anbieter: ThriftBooks-Dallas, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less. Bestandsnummer des Verkäufers G3031006380I4N00

Verkäufer kontaktieren

Gebraucht kaufen

EUR 51,99
Versand gratis
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Sze, Vivienne|Chen, Yu-Hsin|Yang, Tien-Ju|Emer, Joel S.
ISBN 10: 3031006380 ISBN 13: 9783031006388
Neu Kartoniert / Broschiert
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer . Bestandsnummer des Verkäufers 608129052

Verkäufer kontaktieren

Neu kaufen

EUR 64,33
EUR 48,99 shipping
Versand von Deutschland nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Sze, Vivienne; Chen, Yu-Hsin; Yang, Tien-Ju; Emer, Joel S.
Verlag: Springer, 2020
ISBN 10: 3031006380 ISBN 13: 9783031006388
Neu Softcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 402364342

Verkäufer kontaktieren

Neu kaufen

EUR 64,54
EUR 7,44 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Sze, Vivienne; Chen, Yu-Hsin; Yang, Tien-Ju; Emer, Joel S.
Verlag: Springer, 2020
ISBN 10: 3031006380 ISBN 13: 9783031006388
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. 1st edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26395061353

Verkäufer kontaktieren

Neu kaufen

EUR 65,18
EUR 3,39 shipping
Versand innerhalb von USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Sze, Vivienne; Chen, Yu-hsin; Yang, Tien-ju; Emer, Joel S.
Verlag: Springer, 2020
ISBN 10: 3031006380 ISBN 13: 9783031006388
Neu Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 44569123-n

Verkäufer kontaktieren

Neu kaufen

EUR 65,60
EUR 2,24 shipping
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Sze, Vivienne; Chen, Yu-Hsin; Yang, Tien-Ju; Emer, Joel S.
Verlag: Springer, 2020
ISBN 10: 3031006380 ISBN 13: 9783031006388
Neu Softcover

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 18395061347

Verkäufer kontaktieren

Neu kaufen

EUR 66,48
EUR 9,95 shipping
Versand von Deutschland nach USA

Anzahl: 4 verfügbar

In den Warenkorb

Foto des Verkäufers

Vivienne Sze (u. a.)
ISBN 10: 3031006380 ISBN 13: 9783031006388
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Efficient Processing of Deep Neural Networks | Vivienne Sze (u. a.) | Taschenbuch | xxi | Englisch | 2020 | Springer Nature Switzerland | EAN 9783031006388 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Bestandsnummer des Verkäufers 121975118

Verkäufer kontaktieren

Neu kaufen

EUR 66,85
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Sze, Vivienne; Chen, Yu-hsin; Yang, Tien-ju; Emer, Joel S.
Verlag: Springer, 2020
ISBN 10: 3031006380 ISBN 13: 9783031006388
Gebraucht Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 44569123

Verkäufer kontaktieren

Gebraucht kaufen

EUR 67,55
EUR 2,24 shipping
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Vivienne Sze
ISBN 10: 3031006380 ISBN 13: 9783031006388
Neu Paperback

Anbieter: Grand Eagle Retail, Bensenville, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metricssuch as energy-efficiency, throughput, and latencywithout sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems.The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas. This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783031006388

Verkäufer kontaktieren

Neu kaufen

EUR 67,92
Versand gratis
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Es gibt 12 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen