Energy-Efficient Time-Domain Computation for Edge Devices: Challenges and Prospects

Hamza Al Maharmeh

ISBN 10: 1638283567 ISBN 13: 9781638283560
Verlag: now publishers Inc, 2024
Neu Paperback / softback

Verkäufer THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 14. Juni 2006


Beschreibung

Beschreibung:

This item is printed on demand. New copy - Usually dispatched within 5-9 working days 99. Bestandsnummer des Verkäufers C9781638283560

Diesen Artikel melden

Inhaltsangabe:

The increasing demand for high performance and energy efficiency in Artificial Neural Networks (ANNs) and Deep Learning (DL) accelerators has driven a wide range of application specific integrated circuits (ASICs). In recent years, this field has started to deviate from the conventional digital implementation of machine learning-based (ML) accelerators; instead, researchers have started to investigate implementation in the analog domain. This is due to two main reasons: better performance and lower power consumption. Analog processing has become more efficient than its digital counterparts, especially for Deep Neural Networks (DNNs), partly because emerging analog memory technologies have enabled local storage and processing known as compute in-memory (CIM), thereby reducing the amount of data movement between the memory and the processor. However, there are many challenges in the analog domain approach, such as the lack of a capable commercially available nonvolatile analog memory, and the analog domain is susceptible to variation and noise. Additionally, analog cores involve digital-to-analog converters (DACs) and analog-to-digital converters (ADCs), which consume up to 64% of total power consumption. An emerging trend has been to employ time-domain (TD) circuits to implement the multiply-accumulate (MAC) operation. TD cores require time-to-digital converters (TDCs) and digital-to-time converters (DTCs). However, DTC and TDC can be more energy and area efficient than DAC and ADC. TD accelerators leverage both digital and analog features, thereby enabling energy-efficient computing and scaling with complementary metal–oxide–semiconductor (CMOS) technology. The performance of TD accelerators can be substantially improved if custom-designed analog delay cells, DTC, and TDC are used. This monograph reviews state-of-the-art TD accelerators and discusses system considerations and hardware implementations. Additionally, the work analyzes the energy and area efficiency of the TD architectures, including spatially unrolled (SU) and recursive (REC) architectures, for varying input resolutions and network sizes to provide insight for designers into how to choose the appropriate TD approach for a particular application. The monograph also discusses an implemented scalable SU-TD accelerator synthesized in 65nm CMOS technology, and concludes with the limitations of time-domain computation and future work.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Energy-Efficient Time-Domain Computation for...
Verlag: now publishers Inc
Erscheinungsdatum: 2024
Einband: Paperback / softback
Zustand: New

Beste Suchergebnisse bei AbeBooks

Beispielbild für diese ISBN

Al Maharmeh, Hamza; Alhawari, Mohammad; Ismail, Mohammed
Verlag: Now Publishers Inc, 2024
ISBN 10: 1638283567 ISBN 13: 9781638283560
Gebraucht Softcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher | The increasing demand for high performance and energy efficiency in Artificial Neural Networks (ANNs) and Deep Learning (DL) accelerators has driven a wide range of application specific integrated circuits (ASICs). In recent years, this field has started to deviate from the conventional digital implementation of machine learning-based (ML) accelerators; instead, researchers have started to investigate implementation in the analog domain. This is due to two main reasons: better performance and lower power consumption. Analog processing has become more efficient than its digital counterparts, especially for Deep Neural Networks (DNNs), partly because emerging analog memory technologies have enabled local storage and processing known as compute in-memory (CIM), thereby reducing the amount of data movement between the memory and the processor. However, there are many challenges in the analog domain approach, such as the lack of a capable commercially available nonvolatile analog memory, and the analog domain is susceptible to variation and noise. Additionally, analog cores involve digital-to-analog converters (DACs) and analog-to-digital converters (ADCs), which consume up to 64% of total power consumption. An emerging trend has been to employ time-domain (TD) circuits to implement the multiply-accumulate (MAC) operation. TD cores require time-to-digital converters (TDCs) and digital-to-time converters (DTCs). However, DTC and TDC can be more energy and area efficient than DAC and ADC. TD accelerators leverage both digital and analog features, thereby enabling energy-efficient computing and scaling with complementary metal-oxide-semiconductor (CMOS) technology. The performance of TD accelerators can be substantially improved if custom-designed analog delay cells, DTC, and TDC are used. This monograph reviews state-of-the-art TD accelerators and discusses system considerations and hardware implementations. Additionally, the work analyzes the energy and area efficiency of the TD architectures, including spatially unrolled (SU) and recursive (REC) architectures, for varying input resolutions and network sizes to provide insight for designers into how to choose the appropriate TD approach for a particular application. The monograph also discusses an implemented scalable SU-TD accelerator synthesized in 65nm CMOS technology, and concludes with the limitations of time-domain computation and future work. Bestandsnummer des Verkäufers 42803733/1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 34,33
EUR 105,00 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Al Maharmeh, Hamza; Ismail, Mohammed; Alhawari, Mohammad
Verlag: Now Publishers, 2024
ISBN 10: 1638283567 ISBN 13: 9781638283560
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 26402455347

Verkäufer kontaktieren

Neu kaufen

EUR 79,35
EUR 3,40 shipping
Versand innerhalb von USA

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Al Maharmeh, Hamza; Ismail, Mohammed; Alhawari, Mohammad
Verlag: Now Publishers, 2024
ISBN 10: 1638283567 ISBN 13: 9781638283560
Neu Softcover
Print-on-Demand

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 395003116

Verkäufer kontaktieren

Neu kaufen

EUR 82,76
EUR 7,42 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Al Maharmeh, Hamza; Ismail, Mohammed; Alhawari, Mohammad
Verlag: Now Publishers, 2024
ISBN 10: 1638283567 ISBN 13: 9781638283560
Neu Softcover
Print-on-Demand

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18402455353

Verkäufer kontaktieren

Neu kaufen

EUR 85,10
EUR 9,95 shipping
Versand von Deutschland nach USA

Anzahl: 4 verfügbar

In den Warenkorb